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Abstract

This thesis studies the problem of identifying and extracting relationships between biological entities from

the text of scientific papers. For the relation extraction task, state-of-the-art performance has been achieved

by classification methods based on convolution kernels which facilitate sophisticated reasoning on natural

language text using structural similarities between sentences and/or their parse trees. Despite their success,

however, kernel-based methods are difficult to customize and computationally expensive to scale to large

datasets. In this thesis, the first problem is addressed by proposing a nonstationary extension to the conven-

tional convolution kernels for improved expressiveness and flexibility. For scalability, I propose to employ

kernelized locality sensitive hashcodes as explicit representations of natural language structures, which can

be used as feature-vector inputs to arbitrary classification methods. For optimizing the representations, a

theoretically justified method is proposed that is based on approximate and efficient maximization of the

mutual information between the hashcodes and the class labels. I have evaluated the proposed approach on

multiple biomedical relation extraction datasets, and have observed significant and robust improvements

in accuracy over state-of-the-art classifiers, along with drastic orders-of-magnitude speedup compared to

conventional kernel methods.

Finally, in this thesis, a nearly-unsupervised framework is introduced for learning kernel- or neural-

hashcode representations. In this framework, an information-theoretic objective is defined which leverages

both labeled and unlabeled data points for fine-grained optimization of each hash function, and propose a

greedy algorithm for maximizing that objective. This novel learning paradigm is beneficial for building

hashcode representations generalizing from a training set to a test set. I have conducted a thorough exper-

imental evaluation on the relation extraction datasets, and demonstrate that the proposed extension leads

viii



to superior accuracies with respect to state-of-the-art supervised and semi-supervised approaches, such as

variational autoencoders and adversarial neural networks. An added benefit of the proposed representation

learning technique is that it is easily parallelizable, interpretable, and owing to its generality, applicable to

a wide range of NLP problems.
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Chapter 1

Introduction

Recent advances in genomics and proteomics have significantly accelerated the rate of uncovering and

accumulating new biomedical knowledge. Most of this knowledge is available only via scientific publi-

cations, which necessitates the development of automated and semi-automated tools for extracting useful

biomedical information from unstructured text. In particular, the task of identifying biological entities and

their relations from scientific papers has attracted significant attention in the past several years (Rios et al.,

2018; Peng and Lu, 2017; Hsieh et al., 2017; Kavuluru et al., 2017; Rao et al., 2017; Hahn and Surdeanu,

2015; Tikk et al., 2010; Airola et al., 2008; Krallinger et al., 2008; Hakenberg et al., 2008; Hunter et al.,

2008; Mooney and Bunescu, 2005; Bunescu et al., 2005; McDonald et al., 2005), especially because of its

potential impact on developing personalized cancer treatments (Downward, 2003; Vogelstein and Kinzler,

2004; Cohen, 2015; Rzhetsky, 2016; Valenzuela-Escárcega et al., 2017).

1.1 Task: Biomedical Relation Extraction

Consider the sentence “As a result, mutant Ras proteins accumulate with elevated GTP-bound propor-

tion”, which describes a “binding” relation (interaction) between a protein “Ras” and a small-molecule

“GTP”. We want to extract this relation. As per the literature on biomedical relation extraction, one of the

preliminary steps for the extraction of relations from a text sentence is to parse the sentence into a syntactic

or semantic graph, and to perform the extraction from the graph itself.
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result-01

accumulate-01

ARG2

include-91

Ras enzyme

proportion
ARG3

ARG1

TOP

bind-01

mod
mutate-01

ARG1

GTP small-molecule

ARG1
ARG2

elevate-01

ARG1

ARG2

Ras enzyme

ARG1

Figure 1.1: AMR of text “As a result, mutant Ras proteins accumulate with elevated GTP-bound propor-
tion.”; the information regarding a hypothesized relation, “Ras binds to GTP”, is localized to the colored
sub-graph. The subgraph can be used as structural features to infer if the candidate relation is correct (valid)
or incorrect (invalid).

Figure 1.1 depicts a manual Abstract Meaning Representation (AMR, a semantic representation) of

the above mentioned sentence. The relation “RAS-binds-GTP” is extracted from the highlighted subgraph

under the “bind” node. In the subgraph, relationship between the interaction node “bind-01” and the entity

nodes, “Ras” and “GTP”, is defined through two edges, “ARG1” and “ARG2” respectively.

For a deeper understanding of the task, see Figure 1.2. Given an AMR graph, as in Figure 1.2(a), we

first identify potential entity nodes (proteins, molecules, etc) and interaction nodes (bind, activate, etc).

Next, we consider all permutations to generate a set of potential relations. For each candidate relation,

we extract the corresponding shortest path subgraph, as shown in Figure 1.2(b) and 1.2(c). In order to

classify a relation, as correct or incorrect, its corresponding subgraph can be classified as a proxy; same

applies to the labeled candidates in a train set. Also, from a subgraph, a sequence can be generated by

traversals between the root node and the leaf nodes if using classifiers operating on sequences. In general,

the biomedical relation extraction task is formulated as of classification of natural language structures, such

as sequences, graphs, etc. Note that this thesis doesn’t delve in to the problem of named entity recognition,

2
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Figure 1.2: In 1.2(a), a sentence is parsed into a semantic graph. Then the two candidate hypothesis
about different biomolecular interactions (structured prediction candidates) are generated automatically.
According to the text, a valid hypothesis is that Sos catalyzes binding between Ras and GTP, while the
alternative hypothesis Ras catalyzes binding between GTP and GDP is false; each of those hypotheses
corresponds to one of the post-processed subgraphs shown in 1.2(b) and 1.2(c), respectively.
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or the problem of syntactic/semantic parsing. I use existing tools from the literature for these upstream

(challenging) tasks in the pipeline.

1.2 Convolution Kernels for Relation Extraction

An important family of classifiers that operate on discrete structures is based on convolution kernels,

originally proposed by (Haussler, 1999), for computing similarity between discrete structures of any type

and later extended for specific structures such as strings, sequences/paths, trees (Collins and Duffy, 2001;

Zelenko et al., 2003; Mooney and Bunescu, 2005; Shi et al., 2009). For the relation extraction task,

convolution kernel based classifiers have demonstrated state-of-the-art performance (Chang et al., 2016;

Tikk et al., 2010; Miwa et al., 2009; Airola et al., 2008).

1.2.1 Shortcomings of Convolution Kernels

Despite the success and intuitive appeal of convolution kernel-based methods in various NLP tasks, includ-

ing biomedical relation extraction, there are two important issues limiting their practicality in real-world

applications (Collins and Duffy, 2001; Moschitti, 2006; Tikk et al., 2010; Qian and Zhou, 2012; Srivastava

et al., 2013; Hovy et al., 2013; Filice et al., 2015; Tymoshenko et al., 2016).

1.2.1.1 Lack of Flexibility in Kernels

First, convolution kernels are not flexible enough to adequately model rich natural language representa-

tions, as they typically depend only on a few tunable parameters. This inherent rigidity prevents kernel-

based methods from properly adapting to a given task, as opposed to, for instance, neural networks that

typically have millions of parameters that are learned from data and show state-of-the-art results for a

number of NLP problems (Collobert and Weston, 2008; Sundermeyer et al., 2012; Chen and Manning,

2014; Sutskever et al., 2014; Kalchbrenner et al., 2014; Luong et al., 2015; Kumar et al., 2016).
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1.2.1.2 Prohibitive Kernel Compute Cost

The second major issue with convolution kernels is that the traditional kernel-trick based methods can

suffer from relatively high computational costs, since computing kernel similarities between two natural

language structures (graphs, paths, sequences, etc.) can be an expensive operation. Furthermore, to build

a Support Vector Machine (SVM), or a k-Nearest Neighbor (kNN) classifier or a Gaussian Process (GP)

classifier from N training examples, one needs to compute kernel similarities between O(N2) pairs of

training points (Yu et al., 2002; Cortes and Vapnik, 1995; Schölkopf and Smola, 2002), which can be

prohibitively expensive for large N (Moschitti, 2006; Rahimi and Recht, 2008; Pighin and Moschitti,

2009; Zanzotto and Dell’Arciprete, 2012; Severyn and Moschitti, 2013; Felix et al., 2016).

I attempt to resolve the two shortcoming of convolution kernels by proposing novel models and algo-

rithms, relying upon two key concepts: (a) nonstationary kernels (Paciorek and Schervish, 2003; Snelson

et al., 2003; Le et al., 2005; Assael et al., 2014), and (b) locality sensitive hashing (Indyk and Motwani,

1998; Kulis and Grauman, 2009; Joly and Buisson, 2011). These two concepts are known in computer

science, but not explored for convolution kernels previously.

1.2.2 Key Concepts

1.2.2.1 Nonstationary Kernels

In this thesis, a nonstationary extension to the conventional convolution kernels is proposed, introducing

a novel, task-dependent parameterization of the kernel similarity function for better expressiveness and

flexibility. Those parameters, which need to be inferred from the data, are defined in a way that allows the

model to ignore substructures irrelevant for a given task when computing kernel similarity.
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1.2.2.2 Locality Sensitive Hashing

To address the scalability issue, I propose to build implicit or explicit representations of data points using

kernelized locality sensitive hashcodes, usable with classifiers, such as kNN, Random Forest, etc. The re-

quired number of kernel computations isO(N), i.e. linear in the number of training examples. When using

the hashcodes as implicit representations for kNN classification, the technique of locality sensitive hashing

serves only as an approximation. On the other hand, as a core contribution of this thesis, I also propose to

employ hashcodes as explicit representations of natural language so that one can use this efficient kernel

functions based technique with a wider range of classification models, for the goal of obtaining superior

inference accuracies, rather than approximations, along with the advantage of scalability.

1.2.3 Locality Sensitive Hashcodes as Explicit Representations

From the above, we understand that locality sensitive hashing technique can be leveraged for efficient

training of classifiers operating on kNN-graphs. However, the question is whether scalable kernel locality-

sensitive hashing approaches can be generalized to a wider range of classifiers. Considering this, I propose

a principled approach for building explicit representations for structured data, as opposed to implicit ones

employed in prior kNN-graph-based approaches, by using random subspaces of kernelized locality sensi-

tive hashcodes. For learning locality sensitive hashcode representations, I propose a theoretically justified

and computationally efficient method to optimize the hashing model with respect to: (1) the kernel function

parameters and (2) a reference set of examples w.r.t. which kernel similarities of data samples are com-

puted for obtaining their hashcodes. This approach maximizes an approximation of mutual information

between hashcodes of NLP structures and their class labels. The main advantage of the proposed repre-

sentation learning technique is that it can be used with arbitrary classification methods, besides kNN, such

as Random Forests (RF) (Ho, 1995; Breiman, 2001). Additional parameters, resulting from the proposed

non-stationary extension, can also be learned by maximizing the mutual information approximation.
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1.2.4 Nearly Unsupervised Hashcode Representations

Finally, I also consider a semi-supervised setting to learn hashcode representations. For this settings, I

introduce an information-theoretic algorithm, which is nearly unsupervised as I propose to use only the

knowledge of which set an example comes from, a training set or a test set, along with the example itself,

whereas the actual class labels of examples (from a training set) are input only to the final supervised-

classifier, such as an RF, which takes input of the learned hashcodes as representation (feature) vectors of

examples along with their class labels. I introduce multiple concepts for fine-grained optimization of hash

functions, employed in the algorithm that constructs hash functions greedily one by one. In supervised

settings, fine-grained (greedy) optimization of hash functions could lead to overfitting whereas, in my

proposed nearly-unsupervised framework, it allows flexibility for explicitly maximizing the generalization

capabilities of hash functions.

1.3 Thesis Overview

The structure of the thesis is organized as below.

• In Chapter 2, I provide a problem statement along with some background on convolution kernels, and

then demonstrate that Abstract Meaning Representations (AMR) significantly improve the accuracy

of a convolution kernel based relation extraction system when compared to a baseline that relies

solely on surface- and syntax-based features. I also propose an approach, for inference of relations

over sets of multiple sentences (documents), or for concurrent exploitation of automatically induced

AMR (semantic) and dependency structure (syntactic) representations.

• In Chapter 3, I propose a generalization of convolution kernels, with a nonstationary model, for

better expressibility of natural languages. For a scalable learning of the parameters introduced with

the model, I propose a novel algorithm that leverages stochastic sampling on k-nearest neighbor

graphs, along with approximations based on locality-sensitive hashing.
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• In Chapter 4, I introduce a core contribution of this thesis, proposing to use random subspaces of

kernelized locality sensitive hashcodes for efficiently constructing an explicit representation of nat-

ural language structures suitable for general classification methods. Further, I propose a principled

method for optimizing the kernelized locality sensitive hashing model for classification problems by

maximizing an approximation of mutual information between the hashcodes (feature vectors) and

the class labels.

• In Chapter 5, I extend the hashcode representations based approach with a nearly-unsupervised

learning framework for fine grained optimization of each hash function so as to building hashcode

representations generalizing from a training set to a test set.

• Besides the related works discussed specific to the chapters, I discuss more related works in Chapter

6, and then conclude the thesis in Chapter 7.

It is worth noting that Chapter 2 to 5 are written such that any of those are readable independent of

each other.
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Chapter 2

Extracting Biomolecular Interactions Using Semantic Parsing of

Biomedical Text

Despite the recent progress, current methods for biomedical knowledge extraction suffer from a number

of important shortcomings. First of all, existing methods rely heavily on shallow analysis techniques that

severely limit their scope. For instance, most existing approaches focus on whether there is an interaction

between a pair of proteins while ignoring the interaction types (Airola et al., 2008; Mooney and Bunescu,

2005), whereas other more advanced approaches cover only a small subset of all possible interaction

types (Hunter et al., 2008; McDonald et al., 2005; Demir et al., 2010). Second, most existing methods

focus on single-sentence extraction, which makes them very susceptible to noise. And finally, owing to the

enormous diversity of research topics in biomedical literature and the high cost of data annotation, there

is often significant mismatch between training and testing corpora, which reflects poorly on generalization

ability of existing methods (Tikk et al., 2010).

In this chapter, I present a novel algorithm for extracting biomolecular interactions from unstructured

text that addresses the above challenges. Contrary to the previous works, the extraction task considered

here is less restricted and spans a much more diverse corpus of biomedical articles. These more realistic

settings present some important technical problems for which I provide explicit solutions.

The specific contributions of the thesis, which are introduced in this chapter (Garg et al., 2016), are as

follows:
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• I propose a convolution graph-kernel based algorithm for extracting biomolecular interactions from

Abstract Meaning Representation, or AMR. To the best of my knowledge, this is the first attempt of

using deep semantic parsing for biomedical knowledge extraction task.

• I provide a multi-sentence generalization of the algorithm by defining Graph Distribution Kernels

(GDK), which enables us to perform document-level extraction.

• I suggest a hybrid extraction method that utilizes both AMRs and syntactic parses given by Stanford

Dependency Graphs (SDGs). Toward this goal, I develop a linear algebraic formulation for learning

vector space embedding of edge labels in AMRs and SDGs to define similarity measures between

AMRs and SDGs.

I conduct an exhaustive empirical evaluation of the proposed extraction system on 45+ research arti-

cles on cancer (approximately 3k sentences), containing approximately 20,000 positive-negative labeled

biomolecular interactions.1 The results indicate that the joint extraction method that leverages both AMRs

and SDGs parses significantly improves the extraction accuracy, and is more robust to mismatch between

training and test conditions.

2.1 Problem Statement

Consider the sentence “As a result, mutant Ras proteins accumulate with elevated GTP-bound propor-

tion”, which describes a “binding” interaction between a protein “Ras” and a small-molecule “GTP”. We

want to extract this interaction.

In our representation, which is motivated by BioPAX (Demir et al., 2010), an interaction refers to

either i) an entity effecting state change of another entity; or ii) an entity binding/dissociating with another

entity to form/break a complex while, optionally, also influenced by a third entity. An entity can be of any

type existent in a bio pathway, such as protein, complex, enzyme, etc, although here we refer to an entity

of all valid types simply as a protein. The change in state of an entity or binding type is simply termed as
1The code and the data are available at https://github.com/sgarg87/big_mech_isi_gg.
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State change: inhibit, phosphorylate, signal, activate, transcript, regulate, apoptose, express, translo-
cate, degrade, carboxymethylate, depalmitoylate, acetylate, nitrosylate, farnesylate, methylate, glycosy-
late, hydroxylate, ribosylate, sumoylate, ubiquitinate.

Bind: bind, heterodimerize, homodimerize, dissociate.

Table 2.1: Interaction type examples

“interaction type” in this work. In some cases, entities are capable of changing their state on their own or

bind to an instance of its own (self-interaction). Such special cases are also included. Some examples of

interaction types are shown in Table 2.1.

Below I describe my approach for extracting above-defined interactions from natural language parses

of sentences in a research document.

2.2 Extracting Interactions from an AMR

2.2.1 AMR Biomedical Corpus

Abstract Meaning Representation, or AMR, is a semantic annotation of single/multiple sentences (Ba-

narescu et al., 2013). In contrast to syntactic parses, in AMR, entities are identified, typed and their

semantic roles are annotated. AMR maps different syntactic constructs to same conceptual term. For

instance, “binding”, “bound”, ”bond” correspond to the same concept “bind-01”. Because one AMR rep-

resentation subsumes multiple syntactic representations, it is hypothesized that AMRs have higher utility

for extracting biomedical interactions.

An English-to-AMR parser (Pust et al., 2015b) is trained on two manually annotated corpora: i) a

corpus of 17k general domain sentences including newswire and web text as published by the Linguistic

Data Consortium; and ii) 3.4k systems biology sentences, including in-domain PubMedCentral papers

and the BEL BioCreative corpus. As part of building the bio-specific AMR corpus, the PropBank-based

framesets used in AMR are extended by 45 bio-specific frames such as “phosphorylate-01”, “immunoblot-

01” and the list of AMR standard named entities is also extended by 15 types such as “enzyme”, “pathway”.
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Figure 2.1: AMR of text “As a result, mutant Ras proteins accumulate with elevated GTP-bound propor-
tion.”; interaction “Ras binds to GTP” is extracted from the colored sub-graph.

It is important to note that these extensions are not specific to biomolecular interactions, and cover more

general cancer biology concepts.

2.2.2 Extracting Interactions

Figure 2.1 depicts a manual AMR annotation of a sentence, which has two highlighted entity nodes

with labels “RAS” and “GTP”. These nodes also have entity type annotations, “enzyme” and “small-

molecule” respectively; the concept node with a node label “bind-01” corresponds to an interaction type

“binding” (from the “GTP-bound” in the text). The interaction “RAS-binds-GTP” is extracted from the

highlighted subgraph under the “bind” node. In the subgraph, relationship between the interaction node

“bind-01” and the entity nodes, “Ras” and “GTP”, is defined through two edges with edge labels “ARG1”

and “ARG2” respectively. Additionally, in the subgraph, we assign roles “interaction-type”, “protein”,

“protein” to the nodes “bind-01”, “Ras”, “GTP” respectively (roles presented with different colors in the

subgraph).
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Given an AMR graph, as in Figure 2.1, we first identify potential entity nodes (proteins, molecules,

etc) and interaction nodes (bind, activate, etc). Next, we consider all permutations to generate a set of

potential interactions according to the format defined above. For each candidate interaction, we extract the

corresponding shortest path subgraph. We then project the subgraph to a tree structure with the interaction

node as root and also possibly the protein nodes (entities involved in the interaction) as leaves.2

Our training set consists of tuples {Gai , Ii, li}ni=1, whereGai is an AMR subgraph constructed such that

it can represent an extracted candidate interaction Ii with interaction node as root and proteins nodes as

leaves typically; and l = {0, 1} is a binary label indicating whether this subgraph contains Ii or not. Given

a training set, and a new sample AMR subgraph Ga∗ for interaction I∗, we would like to infer whether I∗

is valid or not. I address this problem by developing a graph-kernel based approach.

2.2.3 Semantic Embedding Based Graph Kernel

I propose an extension of the contiguous subtree kernel (Zelenko et al., 2003; Culotta and Sorensen, 2004)

for mapping the extracted subgraphs (tree structure) to an implicit feature space. Originally, this kernel

uses an identity function on two node labels when calculating the similarity between those two nodes. I

instead propose to use vector space embedding of the node labels (Clark, 2014; Mikolov et al., 2013), and

then define a sparse RBF kernel on the node label vectors. Similar extensions of convolution kernels have

been been suggested previously (Mehdad et al., 2010; Srivastava et al., 2013).

Consider two graphs Gi and Gj rooted at nodes Gi.r and Gj .r, respectively, and let Gi.c and Gj .c

be the children nodes of the corresponding root nodes. Then the kernel between Gi and Gj is defined as

follows:

K(Gi, Gj) =


0 if k(i, j) = 0

k(i, j) +Kc(Gi.c, Gj .c) otherwise

,

2This can be done via so called inverse edge labels; see (Banarescu et al., 2013, section 3).
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where k(i, j) ≡ k(Gi.r, Gj .r) is the similarity between the root nodes, whereas Kc(Gi.c, Gj .c) is the re-

cursive part of the kernel that measures the similarity of the children subgraphs. Furthermore, the similarity

between root nodes x and y is defined as follows:

k(x, y) = kw(x, y)2(kw(x, y)2 + ke(x, y) + kr(x, y))

kw(x, y) = exp((wT
xwy − 1)/β)((wT

xwy − α)/(1− α))+

ke(x, y) = I(ex = ey), kr(x, y) = I(rx = ry) .

(2.1)

Here (·)+ denotes the positive part; I(·) is the indicator function; wx,wy are unit vector embeddings of

node labels;3 ex, ey represent edge labels (label of an edge from a node’s parent to it is the node’s edge

label); rx, ry are roles of nodes (such as protein, catalyst, concept, interaction-type); α is a threshold

parameter on the cosine similarity (wT
xwy) to control sparsity (Gneiting, 2002); and β is the bandwidth.

The recursive part of the kernel, Kc, is defined as follows:

Kc(Gi.c, Gj .c) =
∑

i,j:l(i)=l(j)

λl(i)
∑

s=1,··· ,l(i)

K(Gi[i[s]], Gj [j[s]])
∏

s=1,··· ,l(i)

k(Gi[i[s]].r, Gj [j[s]].r),

where i, j are contiguous children subsequences under the respective root nodes Gi.r, Gj .r; λ ∈ (0, 1)

is a tuning parameter; and l(i) is the length of sequence i = i1, · · · , il; Gi[i[s]] is a sub-tree rooted at

i[s] index child node of Gi.r. Here, I propose to sort children of a node based on the corresponding edge

labels. This helps in distinguishing between two mirror image trees.

This extension is a valid kernel function ((Zelenko et al., 2003, Theorem 3, p. 1090)). Next, I generalize

the dynamic programming approach of (Zelenko et al., 2003) for efficient calculation of this extended

kernel.
3Learned using word2vec software (Mikolov et al., 2013) on over one million PubMed articles.
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2.2.3.1 Dynamic Programming for Computing Convolution Graph Kernel

In the convolution kernel presented above, the main computational cost is due to comparison of children

sub-sequences. Since different children sub-sequences of a given root node partially overlap with each

other, one can use dynamic programming to avoid redundant computations, thus reducing the cost. Toward

this goal, one can use the following decomposition of the kernel Kc :

Kc(Gi.c, Gj .c) =
∑
p,q

Cp,q,

where Cp,q refers to the similarity between the sub-sequences starting at indices p, q respectively in Gi.c

and Gj .c.

To calculate Cp,q via dynamic programming, let us introduce

Lp,q = max
l

( l∏
s=0

k(Gi[i[p+ s]].r, Gj [j[q + s]].r) 6= 0

)
.

Furthermore, let us denote kp,q = k(Gi[i[p]].r, Gj [j[q]].r), and Kp,q = K(Gi[i[p]], Gj [j[q]]). We then

evaluate Cp,q in a recursive manner using the following equations.

Lp,q =


0 if kp,q = 0

Lp+1,q+1 + 1 otherwise

(2.2)

Cp,q =


0 if kp,q = 0

λ(1−λL(p,q))
1−λ Kp,qkp,q + λCp+1,q+1 otherwise

(2.3)
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Lm+1,n+1 = 0, Lm+1,n = 0, Lm,n+1 = 0

Cm+1,n+1 = 0, Cm+1,n = 0, Cm,n+1 = 0 ,

(2.4)

where m,n are number of children under the root nodes Gi.r and Gj .r respectively.

Note that for graphs with cycles, the above dynamic program can be transformed into a linear program.

There are a couple of practical considerations during the kernel computations. First of all, the kernel

depends on two tunable parameters λ and α. Intuitively, decreasing λ discounts the contributions of longer

child sub-sequences. The parameter α, on the other hand, controls the tradeoff between computational cost

and accuracy. Based on some prior tuning I found that our results are not very sensitive to the parameters.

In the experiments below in this chapter, I set λ = 0.99 and α = 0.4. Also, consistent with previous

studies, I normalize the graph kernel.

2.3 Graph Distribution Kernel- GDK

Often an interaction is mentioned more than once in the same research paper, which justifies a document-

level extraction, where one combines evidence from multiple sentences. The prevailing approach to

document-level extraction is to first perform inference at sentence level, and then combine those inferences

using some type of an aggregation function for a final document-level inference (Skounakis and Craven,

2003; Bunescu et al., 2006). For instance, in (Bunescu et al., 2006), the inference with the maximum

score is chosen. I term this baseline approach as “Maximum Score Inference”, or MSI. Here I advocate a

different approach, where one uses the evidences from multiple sentences jointly, for a collective inference.

Let us assume an interaction Im is supported by km sentences, and let {Gm1, · · · , Gmkm} be the set of

relevant AMR subgraphs extracted from those sentences. We can view the elements of this set as samples

from some distribution over the graphs, which, with a slight abuse of notation, we denote as Gm. Consider

now interactions I1, · · · , Ip, and let G1, · · · ,Gp be graph distributions representing these interactions.
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The graph distribution kernel (GDK), K(Gi,Gj), for a pair Gi,Gj is defined as follows:

K(Gi,Gj) = exp(−Dmm(Gi,Gj));

Dmm(Gi,Gj) =

ki∑
r,s=1

K(Gir, Gis)

k2i
+

kj∑
r,s=1

K(Gjr, Gjs)

k2j
− 2

ki,kj∑
r,s=1

K(Gir, Gjs)

kikj

Here Dmm is the Maximum Mean Discrepancy (MMD), a valid l2 norm, between a pair of distributions

Gi,Gj (Gretton et al., 2012); K(., .) is the graph kernel defined in Section 2.2.3 (though, not restricted

to this specific kernel). As the term suggests, maximum mean discrepancy represents the discrepancy

between the mean of graph kernel features (features implied by kernels) in samples of distributions Gi and

Gj . Now, since Dmm is the l2 norm on the mean feature vectors, K(Gp,Gq) is a valid kernel function.

We note that MMD metric has attracted a considerable attention in the machine learning community

recently (Gretton et al., 2012; Kim and Pineau, 2013; Pan et al., 2008; Borgwardt et al., 2006). For our

purpose, we prefer using this divergence metric over others (such as KL-D divergence) for the follow-

ing reasons: i) Dmm(., .) is a “kernel trick” based formulation, nicely fitting with our settings since we

do not have explicit features representation of the graphs but only kernel density on the graph samples.

Same is true for KL-D estimation with kernel density method. ii) Empirical estimate of Dmm(., .) is a

valid l2 norm distance. Therefore, it is straightforward to derive the graph distribution kernel K(Gi,Gj)

from Dmm(Gi,Gj) using a function such as RBF. This is not true for divergence metrics such as KL-D,

Renyi (Sutherland et al., 2012); iii) It is suitable for compactly supported distributions (small number of

samples) whereas methods, such as k-nearest neighbor estimation of KL-D, are not suitable if the number

of samples in a distribution is too small (Wang et al., 2009); iv) I have seen the most consistent results in

our extraction experiments using this metric as opposed to the others.

For the above mentioned reasons, here I focus on MMD as our primary metric for computing similari-

ties between graph distributions. The proposed GDK framework, however, is very general and not limited

to a specific metric. Next, I briefly describe two other metrics which can be used with GDK.
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2.3.1 GDK with Kullback-Leibler Divergence

While MMD represents maximum discrepancy between the mean features of two distributions, the Kullback-

Leibler divergence (KL-D) is a more comprehensive (and fundamental) measure of distance between two

distributions.4 For defining kernel KKL in terms of KL-D, however, we have two challenges. First of all,

KL-D is not a symmetric function. This problem can be addressed by using a symmetric version of the

distance in the RBF kernel,

KKL(Gi,Gj) = exp(−[DKL(Gi||Gj) +DKL(Gj ||Gi)])

whereDKL(Gi||Gj) is the KL distance of the distribution Gi w.r.t. the distribution Gj . And second, even the

symmetric combination of the divergences is not a valid Euclidian distance. Hence,KKL is not guaranteed

to be a positive semi-definite function. This issue can be dealt in a practical manner as nicely discussed in

(Sutherland et al., 2012). Namely, having computed the Gram matrix using KKL, we can project it onto

a positive semi-definite one by using linear algebraic techniques, e.g., by discarding negative eigenvalues

from the spectrum.

Since we do not know the true divergence, I approximate it with its empirical estimate from the data,

DKL(Gi||Gj) ≈ D̂KL(Gi||Gj). While there are different approaches for estimating divergences from

samples (Wang et al., 2009), here I use kernel density estimator as shown below:

D̂KL(Gi||Gj) =
1

ki

ki∑
r=1

log
1
ki

∑ki
s=1K(Gir, Gis)

1
kj

∑kj
s=1K(Gir, Gjs)

4Recall that the KL divergence between distributions p and q is defined as DKL(p||q) = Ep(x)[log
p(x)
q(x)

].
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2.3.2 GDK with Cross Kernels

Another simple way to evaluate similarity between two distributions is to take the mean of cross-kernel

similarities between the corresponding two sample sets:

K(Gi,Gj) =

ki,kj∑
r,s=1

K(Gir, Gjs)

kikj

Note that this metric looks quite similar to the MMD. As demonstrated in the experiments discussed later

in this chapter, however, MMD does better, presumably because it accounts for the mean kernel similarity

between samples of the same distribution.

Having defined the graph distribution kernel-GDK, K(., .), our revised training set consists of tuples

{Gi, Ii, li}ni=1 with Gai1, · · · , Gaiki sample sub-graphs in Gi. For inferring an interaction I∗, we evalu-

ate GDK between a test distribution G∗ and the train distributions {G1, · · · ,Gn}, from their corresponding

sample sets. Then, one can apply any “kernel trick” based classifier.

2.4 Cross Representation Similarity

In the previous section, I proposed a novel algorithm for document-level extraction of interactions from

AMRs. Looking forward, we will see in the experiments (Section 4.4) that AMRs yield better extraction

accuracy compared to SDGs. This result suggests that using deep semantic features is very useful for the

extraction task. On the other hand, the accuracy of semantic (AMR) parsing is not as good as the accuracy

of shallow parsers like SDGs (Pust et al., 2015b; Flanigan et al., 2014; Wang et al., 2015b; Andreas

et al., 2013; Chen and Manning, 2014). Thus, one can ask whether the joint use of semantic (AMRs) and

syntactic (SDGs) parses can improve extraction accuracy further.
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Abstract Meaning Representation

(a / activate-01
:ARG0 (s / protein :name (n1 / name :op1 "RAS"))
:ARG1 (s / protein :name (n2 / name :op1 "B-RAF"))

Stanford Typed Dependency

nsubj(activates-2, RAS-1)
root(ROOT-0, activates-2)
acomp(activates-2, B-RAF-3)

Figure 2.2: AMR and SDG parses of “RAS activates B-RAF.”

There are some intuitive observations that justify the joint approach: i) shallow syntactic parses may

be sufficient for correctly extracting a subset of interactions; ii) semantic parsers might make mistakes that

are avoidable in syntactic ones. For instance, in machine translation based semantic parsers (Pust et al.,

2015b; Andreas et al., 2013), hallucinating phrasal translations may introduce an interaction/protein in a

parse that is non-existent in true semantics; iii) overfit of syntactic/semantic parsers can vary from each

other in a test corpus depending upon the data used in their independent trainings.

In this setting, in each evidence sentence, a candidate interaction Ii is represented by a tuple Σi =

{Gai , Gsi} of sub-graphs Gai and Gsi which are constructed from AMR and SDG parses of a sentence

respectively. Our problem is to classify the interaction jointly on features of both sub-graphs. This can be

further extended for the use of multiple evidence sentences. I now argue that the graph-kernel framework

outlined above can be applied to this setting as well, with some modifications.

Let Σi and Σj be two sets of points. To apply the framework above, we need a valid kernel K(Σi,Σj)

defined on the joint space. One way of defining this kernel would be using similarity measures between

AMRs and SDGs separately, and then combining them e.g., via linear combination. However, here I

advocate a different approach, where we flatten the joint representation. Each candidate interaction is

represented as a set of two points in the same space. This projection is a valid operation as long as we

have a similarity measure between Gai and Gsi (correlation between the two original dimensions). This is

rather problematic since AMRs and SDGs have non-overlapping edge labels (although the space of node
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labels of both representations coincide). To address this issue, for inducing this similarity measure, I next

develop the approach for edge-label vector space embedding.

Let us understand what I mean by vector space embedding of edge-labels. In Figure 2.2, we have

an AMR and a SDG parse of “RAS activates B-RAF”. “ARG0” in the AMR and “nsubj” in SDG are

conveying that “RAS” is a catalyst of the interaction “activation”; “ARG1” and “acomp” are meaning that

“B-RAF” is activated. In this sentence, “ARG0” and “nsubj” are playing the same role though their higher

dimensional roles, across a diversity set of sentences, would vary. Along these lines, I propose to embed

these high dimensional roles in a vector space, termed as “edge label vectors”.

2.4.1 Consistency Equations for Edge Vectors

I now describe our unsupervised algorithm that learns vector space embedding of edge labels. The al-

gorithm works by imposing linear consistency conditions on the word vector embeddings of node labels.

While I describe the algorithm using AMRs, it is directly applicable to SDGs as well.

2.4.1.1 Linear Algebraic Formulation

In my formulation, I first learn subspace embedding of edge labels (edge label matrices) and then transform

it into vectors by flattening. Let us see the AMR in Figure 2.2 again. We already have word vectors

embedding for terms “activate”, “RAS”, “B-RAF”, denoted as wactivate, wras, wbraf respectively; a

word vector wi ∈ Rm×1. Let embedding for edge labels “ARG0” and “ARG1” be Aarg0, Aarg1; Ai ∈

Rm×m. In this AMR, I define following linear algebraic equations.

wactivate = AT
arg0wras,wactivate = AT

arg1wbraf

AT
arg0wras = AT

arg1wbraf

The edge label matrices AT
arg0, AT

arg1 are linear transformations on the word vectors wras, wbraf , es-

tablishing linear consistencies between the word vectors along the edges. One can define such a set of
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equations in each parent-children nodes sub-graph in a given set of manually annotated AMRs (and so

applies to SDGs independent of AMRs). Along these lines, for a pair of edge labels i, j in AMRs, we have

generalized equations as below.

Y i = XiAi, Y j = XjAj , Z
ij
i Ai = Zijj Aj

Here Ai,Aj are edge labels matrices. Considering ni occurrences of edge labels i, we correspondingly

have word vectors from the ni child node labels stacked as rows in matrixXi ∈ Rni×m; and Y i ∈ Rni×m

from the parent node labels. There would be a subset of instances, nij <= ni, nj where edge labels i and

j has same parent node (occurrence of pairwise relationship between i and j). This gives Ziji ∈ Rnij×m

and Zijj ∈ Rnij×m, subsets of word vectors in Xi and Xj respectively (along rows). Along these lines,

neighborhood of edge label i is defined to be: N (i) : j ∈ N (i) s.t. nij > 0. From the above pairwise

linear consistencies, we derive linear dependencies of anAi with its neighborsAj : j ∈ N (i), while also

applying least square approximation.

XT
i Y i +

∑
j∈N (i)

Ziji
T
Zijj Aj = (XT

i Xi +
∑

j∈N (i)

Ziji
T
Ziji )Ai

Exploiting the block structure in the linear program, I propose an algorithm that is a variant of “Gauss-

Seidel” method (Demmel, 1997; Niethammer et al., 1984).

Algorithm 1. (a) Initialize:

A
(0)
i = (XT

i Xi)
−1XT

i Y i.

(b) Iteratively updateA(t+1)
i until convergence:

A
(t+1)
i = B[XT

i Y i +
∑

j∈N (i)

Ziji
T
Zijj A

(t)
j ]

B = [XT
i Xi +

∑
j∈N (i)

Ziji
T
Ziji ]−1
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(c) Set the inverse edge label matrices:

Aiinv
= A−1i .

Theorem 6.2 in (Demmel, 1997)[p. 287, chapter 6] states that the Gauss-Seidel method converges

if the linear transformation matrix in a linear program is strictly row diagonal dominant (Niethammer

et al., 1984). In the above formulation, diagonal blocks dominate the non-diagonal ones row-wise. Thus,

Algorithm 1 should converge to an optimum.

Using Algorithm 1, I learned edge label matrices in AMRs and SDGs independently on corresponding

AMRs and SDGs annotations from 2500 bio-sentences (high accuracy auto-parse for SDGs). Convergence

was fast for both AMRs and SDGs (log error drops from 10.14 to 10.02 for AMRs, and from 30 to approx.

10 for SDGs).

Next, I flatten an edge label matrix Ai ∈ Rm×m to a corresponding edge label vector ei ∈ Rm2×1,

and then redefine ke(x, y) in (2.1) using the sparse RBF kernel.

ke(x, y) = exp
(
(eTx ey − 1)/β

) (
(eTx ey − α)/(1− α)

)
+

This redefinition enables to define kernel similarity between AMRs and SDGs. One can either use my

original formulation where a single AMR/SDG sub-graph is classified using training sub-graphs from both

AMRs and SDGs, and then the inference with maximum score-MSI (Bunescu et al., 2006) is chosen. An-

other option, preferable, is to consider the set {Gai , Gsi} as samples of a graph distribution Gi representing

an interaction Ii. Generalizing it further, Gi has samples set {Gai1, · · · , Gaikai , G
s
i1, · · · , Gsiksi }, containing

kai , ksi number of sub-graphs in AMRs and SDGs respectively from multiple sentences in a document, all

for classifying Ii. With this graph distribution representation, one can apply my GDK from Section 2.3

and then infer using a “kernel trick” based classifier. This final formulation gives the best results in our

experiments discussed next.
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2.5 Experimental Evaluation

I evaluated the proposed algorithm on two data sets.

PubMed45 Dataset

This dataset has 400 manual and 3k auto parses of AMRs (and 3.4k auto parses of SDGs);5 AMRs auto-

parses are from 45 PubMed articles on cancer. From the 3.4k AMRs, I extract 25k subgraphs representing

20k interactions (valid/invalid); same applies to SDGs. This is the primary data for the evaluation.

I found that for both AMR and SGD based methods, a part of the extraction error can be attributed to

poor recognition of named entities. To minimize this effect, and to isolate errors that are specific to the

extraction methods themselves, I follow the footsteps of the previous studies, and take a filtered subset of

the interactions (approx. 10k out of 20k). I refer to this data subset as “PubMed45” and the super set as

“PubMed45-ERN” (for entity recognition noise).

AIMed Dataset

This is a publicly available dataset6, which contains about 2000 sentences from 225 abstracts. In contrast

to PubMed45, this dataset is very limited as it describes only whether a given pair of proteins interact or

not, without specifying the interaction type. Nevertheless, I find it useful to include this dataset in the

evaluation since it enables us to compare the results with other reported methods.

2.5.1 Evaluation Settings

In a typical evaluation scenario, validation is performed by random sub-sampling of labeled interactions (at

sentence level) for a test subset, and using the rest as a training set. This sentence-level validation approach

is not always appropriate for extracting protein interactions (Tikk et al., 2010), since interactions from a

single/multiple sentences in a document can be correlated. Such correlations can lead to information

leakage between training and test sets (artificial match, not encountered in real settings). For instance,

5not the same 2.5k sentences used in learning edge label vectors
6http://corpora.informatik.hu-berlin.de

24



Methods PubMed45-ERN PubMed45 AIMed
SDG (SLI) 0.25± 0.16 0.32± 0.18 0.27± 0.12

(0.42, 0.29) (0.50, 0.35) (0.54, 0.22)

AMR (SLI) 0.33± 0.16 0.45± 0.25 0.39± 0.05
(0.33, 0.45) (0.58, 0.43) (0.53, 0.33)

SDG (MSI) 0.24± 0.14 0.33± 0.17 0.39± 0.09
(0.39, 0.28) (0.50, 0.34) (0.51, 0.38)

AMR (MSI) 0.32± 0.14 0.45± 0.24 0.51± 0.11
(0.30, 0.45) (0.56, 0.44) (0.49, 0.56)

SDG (GDK) 0.25± 0.16 0.38± 0.15 0.47± 0.08
(0.33, 0.31) (0.32, 0.61) (0.41, 0.58)

AMR (GDK) 0.35± 0.16 0.51± 0.23 0.51± 0.11
(0.31, 0.51) (0.59, 0.49) (0.43, 0.65)

AMR-SDG (MSI) 0.33± 0.18 0.47± 0.24 0.55 ± 0.09
(0.29, 0.54) (0.50, 0.53) (0.46, 0.73)

AMR-SDG (GDK) 0.38 ± 0.16 0.57 ± 0.23 0.52± 0.09
(0.33, 0.55) (0.63, 0.54) (0.43, 0.67)

Data Statistics
Positive ratio 0.07± 0.04 0.19± 0.14 0.37± 0.11
Train-Test Div. 0.014± 0.019 0.041± 0.069 0.005± 0.002

Table 2.2: F1 score statistics. “SLI” is sentence level inference; “MSI” refers to maximum score inference
at document level; “GDK” denotes Graph distribution kernel based inference at document level. Precision,
recall statistics are presented as (mean-precision, mean-recall) tuples.

in (Mooney and Bunescu, 2005), the reported F1 score from the random validation in the AIMed data

is approx. 0.5. My algorithm, even using SDGs, gives 0.66 F1 score in those settings. However, the

performance drops significantly when an independent test document is processed. Therefore, for a realistic

evaluation, I divide data sets at documents level into approx. 10 subsets such that there is minimal match

between a subset, chosen as test set, and the rest of sub sets used for training a kernel classifier. In the

PubMed45 data sets, the 45 articles are clustered into 11 subsets by clustering PubMed-Ids (training data

also includes gold annotations). In AIMed, abstracts are clustered into 10 subsets on abstract-ids. In each

of 25 independent test runs (5 for AIMed data) on a single test subset, 80% interactions are randomly sub

sampled from the test subset and same percent from the train data.
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For the classification, I use the LIBSVM implementation of Kernel Support Vector Machines (Chang

and Lin, 2011) with the sklearn python wrapper 7. Specifically, I used settings { probability=True, C = 1,

class weight=auto }.

2.5.2 Evaluation Results

I categorize all methods evaluated below as follows: i) Sentence Level Inference-SLI; 8 ii) document level

using Maximum Score Inference-MSI (Bunescu et al., 2006); and iii) document-level inference on all the

subgraphs using the Graph Distribution Kernel (GDK). In each of the categories, AMRs, SDGs are used

independently, and then jointly. Edge label vectors are used only when AMRs and SDGs are jointly used,

referred as “AMR-SDG”.

Table 3.2(a) shows the F1 score statistics for all the experiments. In addition, the mean of precision

and recall values are presented as (precision, recall) tuples in the same table. For most of the following

discussion, I focus on F1 scores only to keep the exposition simple.

Before going into detailed discussion of the results, I make the following two observations. First, we

can see that, in all methods (including our GDK and baselines), we obtain much better accuracy using

AMRs compared to SDGs. This result is remarkable, especially taking into account the fact that the

accuracy of semantic parsing is still significantly lower when compared to syntactic parsing. And second,

observe that the overall accuracy numbers are considerably lower for the PubMed45-ERN data, compared

to the filtered data PubMed45.

Let us focus on document-level extraction using MSI. We do not see much improvement in numbers

compared to SLI for our PubMed45 data. On the other hand, even this simple MSI technique works

for the restricted extraction settings in the AIMed data. MSI works for AIMed data probably because

there are multiple sub-graph evidences with varying interaction types (root node in subgraphs), even in a

single sentence, all representing same protein-protein pair interaction. This high number of evidences at

document level, should give a boost in performance even using MSI.
7http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
8Note that even for the sentence level inference, the training/test division is done on document level.
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Next, I consider document-level extraction using the proposed GDK method with the MMD metric.

Comparing against the baseline SLI, we see a significant improvement for all data sets and in both AMRs

and SDGs (although the improvement in PubMed45-ERN is relatively small). The effect of the noise

in entity recognition can be a possible reason why GDK does not work so well in this data compared to

the other two data sets. Here, we also see that: a) GDK method performs better than the document level

baseline MSI; and b) AMRs perform better than SDGs with GDK method also.

Let us now consider the results of extraction using both AMRs and SDGs jointly. Here I evaluate

MSI and GDK, both using our edge label vectors. My primary observation here is that the joint inference

using both AMRs and SDGs improves the extraction accuracy across all datasets. Furthremore, in both

PubMed45 datasets, the proposed GDK method is a more suitable choice for the joint inference on AMRs

and SDGs. As we can see, comparing to GDK for AMRs only, F1 points increment from 0.35 to 0.38

for the PubMed45-ERN data, and from 0.51 to 0.57 for the PubMed45 data. For the AIMed dataset, on

the other hand, the best result (F1 score of 0.55) is obtained when one uses the baseline MSI for the joint

inference on AMRs and SDGs.

To get more insights, I now consider (mean-precision, mean-recall) tuples shown in the Table 3.2(a).

The general trend is that the AMRs lead to higher recall compared to the SDGs. In the PubMed45-ERN

data set, this increase in the recall is at cost of a drop in the precision values. Since the entity types are noisy

in this data set, this drop in the precision numbers is not completely surprising (note that the F1 scores still

increase). With the use of the GDK method in the same data set, however, the precision drop (SDGs to

AMRs) becomes negligible, while the recall still increases significantly. In the data set PubMed45 (the

one without noise in the entity types), both the precision and recall are generally higher for the AMRs

compared to the SDGs. Again, there is an exception for the GDK approach, for which the recall decreases

slightly. However, the corresponding precision almost doubles.

For a more fine-grained comparison between the methods, I plot F1 score for each individual test set in

Figure 2.3. Here, I compare the baselines, “AMR (MSI)”, “SDG (MSI)” against the “AMR-SDG (GDK)”

in PubMed45 data set (and, “AMR-SDG (MSI)” for “AIMed” dataset). We see a general trend, across
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Figure 2.3: Comparison of extraction accuracy (F1 score)
28



MMD KL-D CK

SDG 0.25± 0.16 0.21± 0.17 0.26± 0.13
(0.33, 0.31) (0.59, 0.21) (0.29, 0.38)

AMR 0.35± 0.16 0.37± 0.17 0.29± 0.13
(0.31, 0.51) (0.50, 0.41) (0.28, 0.39)

Table 2.3: Comparison of F1 scores for different divergence metrics used with GDK. The evaluation is
on PubMed45-ERN dataset. “KL-D” and “CK” stand for Kullback-Leibler divergence and Cross Kernels,
respectively.

all test subsets, of AMRs being more accurate than SDGs and the joint use of two improving even upon

AMRs. Though, there are some exceptions where the difference is marginal between the three. From

a cross checking, I find that such exceptions occur when there is relatively more information leakage

between train-test, i.e. less train-test divergence. I use Maximum Mean Discrepancy-MMD for evaluating

this train-test divergence (originally used for defining GDK in Section 2.3. I find that our GDK technique

is more suitable when MMD > 0.01 (MMD is normalized metric for a normalized graph kernel).

The results for the GDK method described above are specific to the MMD metric. I also evaluated

GDK using two other metrics (KL-D and cross kernels), specifically on “PubMed45-ERN” dataset, as

presented in Table 2.3. Here, as in Table 3.2(a), I present (mean-precision, mean-recall) tuples too. We can

see that MMD and KL-D metrics, both, perform equally well for AMR whereas MMD does better in case

of SDG. CK (cross kernels), which is a relatively naive approach, also performs reasonably well, although

for the AMRs it performs worse compared to MMD and KL-D. For the precision and recall numbers in the

Table 2.3, we see similar trends as reported in Table 3.2(a). We observe that the recall numbers increase

for the AMRs compared to the SDGs (the metric CK is an exception with negligible increase). Also,

comparing KL-D against MMD, we see the former favors (significantly) higher precision, albeit at the

expense of lower recall values.
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2.6 Related Work

There have been different lines of work for extracting protein extractions. Pattern-matching based sys-

tems (either manual or semi-automated) usually yield high precision but low recall (Hunter et al., 2008;

Krallinger et al., 2008; Hakenberg et al., 2008; Hahn and Surdeanu, 2015). Kernel-based methods based

on various convolution kernels have also been developed for the extraction task (Chang et al., 2016; Tikk

et al., 2010; Miwa et al., 2009; Airola et al., 2008; Mooney and Bunescu, 2005). Some approaches work

on string rather than parses (Mooney and Bunescu, 2005). The above mentioned works either rely on text

or its shallow parses, none using semantic parsing for the extraction task. Also, most works consider only

protein-protein interactions while ignoring interaction types. Some recent works used distant supervision

to obtain a large data set of protein-protein pairs for their experiments (Mallory et al., 2015).

Document-level extraction has been explored in the past (Skounakis and Craven, 2003; Bunescu et al.,

2006). These works classify at sentence level and then combine the inferences whereas we propose to infer

jointly on all the sentences at document level.

Previously, the idea of linear relational embedding has been explored in (Paccanaro and Hinton, 2000),

where triples of concepts and relation types between those concepts are (jointly) embedded in some latent

space. Neural networks have also been employed for joint embedding (Bordes et al., 2014). Here I advo-

cate for a factored embedding where concepts (node labels) are embedded first using plain text, and then

relations (edge labels) are embedded in a linear sub-space.

2.7 Chapter Summary

In summary, I have developed and validated a method for extracting biomolecular interactions that, for

the first time, uses deep semantic parses of biomedical text (AMRs). I have presented a novel algorithm,

which relies on Graph Distribution Kernels (GDK) for document-level extraction of interactions from a

set of AMRs in a document. GDK can operate on both AMR and SDG parses of sentences jointly. The

rationale behind this hybrid approach is that while neither parsing is perfect, their combination can yield
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superior results. Indeed, the experimental results suggest that the proposed approach outperforms the

baselines, especially in the practically relevant scenario when there is a noticeable mismatch between the

training and test sets.

To facilitate the joint approach, I have proposed a novel edge vector space embedding method to assess

similarity between different types of parses. I believe this notion of edge-similarly is quite general and will

have applicability for a wider class of problems involving graph kernels. As a future work, one can validate

this framework on a number of problems such as improving accuracy in AMRs parsing with SDGs.
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Chapter 3

Stochastic Learning of Nonstationary Kernels for Natural Language

Modeling

Despite the success of convolution kernel-based methods in various NLP tasks (Collins and Duffy, 2001;

Moschitti, 2006; Tikk et al., 2010; Qian and Zhou, 2012; Srivastava et al., 2013; Hovy et al., 2013; Filice

et al., 2015; Tymoshenko et al., 2016), there are two important issues limiting their practicality in real-

world applications. First, convolution kernels are not flexible enough to adequately model rich natural

language representations, as they typically depend only on a few tunable parameters. This inherent rigidity

prevents kernel-based methods from properly adapting to a given task, as opposed to, for instance, neural

networks that typically have millions of parameters that are learned from data and show state-of-the-art

results for a number of NLP problems (Collobert and Weston, 2008; Sundermeyer et al., 2012; Chen and

Manning, 2014; Sutskever et al., 2014; Kalchbrenner et al., 2014; Luong et al., 2015; Kumar et al., 2016).

The second major issue with convolution kernels is the high computational cost, for both learning and

inference, as computing kernel similarity between a pair of discrete structures costs polynomial time in its

size. For instance, classifying a new data point based on N labeled examples requires calculation of N

pairwise similarities, which might be prohibitively expensive for many real-world problems.

I address the first problem by proposing a nonstationary extension to the conventional convolution ker-

nels, by introducing a novel, task-dependent parameterization of the kernel similarity function for better

expressiveness and flexibility. Those parameters, which need to be inferred from the data, are defined in a
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Figure 3.1: In 3.1(a), a sentence is parsed into a semantic graph. Then the two candidate hypothesis
about different biomolecular interactions (structured prediction candidates) are generated automatically.
According to the text, a valid hypothesis is that Sos catalyzes binding between Ras and GTP, while the
alternative hypothesis Ras catalyzes binding between GTP and GDP is false; each of those hypotheses
corresponds to one of the post-processed subgraphs shown in 3.1(b) and 3.1(c), respectively.
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way that allows the model to ignore substructures irrelevant for a given task when computing kernel sim-

ilarity. For example, in Table 3.1, the screened-out tuples are ignored when computing path kernels. This

model should be highly relevant to problems where a structure is large in size, and only some sub-structures

are relevant for a given task; for instance, in biomedical domain, explaining a biological phenomenon may

require either long sentences or multiple sentences.

To address the scalability issue, I introduce an efficient stochastic algorithm for learning the param-

eters of the convolution kernels. Generally speaking, exact learning of those parameters would require

constructing an N × N Gram matrix of pairwise similarities between the labeled data points, which be-

come computationally expensive for large N . Instead, here I propose an appropriate loss function defined

over a k-NN graph,1 an approach similar to that used for distance metric learning (Weinberger et al.,

2006; Weinberger and Saul, 2009). Kernel-based locality-sensitive hashing (LSH) allows computing a

k-NN graph approximately,2 with as low as O(N1.5) (Kulis and Grauman, 2012). Since k-NN graphs are

built several times during learning, hashing may not be enough for scalable learning, and may therefore

necessitate the use of the introduced stochastic-sampling on k-NN graphs in the proposed algorithm.

The main contributions of this chapter (Garg et al., 2018), are as follows:

(i) I propose a nonstationary extension to the conventional kernels to achieve better expressiveness and

flexibility for general NLP tasks;

(ii) I introduce an efficient stochastic algorithm for learning the parameters of the convolution kernel,

optionally using any kernel-LSH;

(iii) I validate the proposed approach in experiments, for the relation extraction task, and find a signifi-

cant increase in accuracies across multiple datasets containing 100k (unique) labeled discrete structures.

In addition to the above contributions, another novelty is the use of kernel-LSH in NLP, although we

note that (non-kernel) LSH has been used for NLP tasks such as documents retrieval, machine translation,

etc (Bawa et al., 2005; Li et al., 2014; Wurzer et al., 2015; Shi and Knight, 2017).

1In this work, k-NNs give better accuracy than SVMs.
2Known to work in computer vision, but unexplored in NLP.
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Positive labeled: (protein, example) (protein, arg0) (have, arg1-of) (and, op1-of) (site, purpose-of)
(bind) (bind) (arg1, enzyme) (bind) (purpose-of, site) (op1-of, and) (op2, site) (purpose, exchange)
(arg1, small-molecule)

Negative labeled: (enyzme, arg1) (bind) (bind) (purpose-of, site) (op1-of, and) (op2, site) (purpose, ex-
change) (arg1, small-molecule) (bind) (purpose-of, site) (op1-of, and) (op2, site) (arg2, small-molecule)

Table 3.1: The sequences of tuples are obtained from traversing the subgraphs, in Figure 3.1(b) and 3.1(c),
respectively.

3.1 Problem Statement

In Figure 3.1, a text sentence “Furthermore, GEFs such as Sos have allosteric sites for Ras binding as

well as sites for GDP/GTP exchange, and it is hard to measure GTP loading on individual Ras isoforms in

cells”, is parsed into an Abstract Meaning Representation (AMR) graph (Banarescu et al., 2013); we use

the translation based AMR parser proposed in (Pust et al., 2015a). We extract structured information about

biomolecular interactions, each involving the interaction type, and two or three participants with a catalyst

or domain role, from the AMR graph.

In the AMR graph, the blue nodes are for potential interaction types, and the green nodes are potential

participants. Based on the list of interaction types, and participants, multiple candidate bio-molecular

interactions are generated automatically; these are referred as the candidates for structured prediction,

each one to be binary classified. As per the meaning of the source text, a candidate is manually annotated

as positive (correct) or negative (incorrect), for training/test purposes.

As in the previous chapter, for a given candidate, a corresponding subgraph is extracted from the

AMR, and post-processed such that the interaction-type becomes the root node in the subgraph, and the

participants become leaf nodes; see Figure 3.1(b), 3.1(c). In the subgraphs, yellow color is for the catalyst

role and green for the domain role. Thus, in order to classify a candidate bio-molecular interaction, its

corresponding subgraph can be classified as a proxy; same applies to the labeled candidates in a train set.

Also, from a subgraph, a sequence can be generated by traversals between the root node and the leaf nodes.

In general, we are interested in classification of natural language structures such as sequences and

graphs.
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3.2 Convolution Kernels and Locality Sensitive Hashing for k-NN

Approximations

Many NLP tasks involve a classification problem where, given a set of discrete structures S and the asso-

ciated class labels y, (S,y) = {Si, yi}Ni=1, the goal is infer the correct label y∗ for a test structure S∗. My

approach for the problem is convolution kernel based k-NN classifiers.

3.2.1 Convolution Kernels

Convolution kernels belong to a class of kernels that compute similarity between discrete structures (Haus-

sler, 1999; Collins and Duffy, 2001). In essence, convolution kernel similarity functionK(Si, Sj) between

two discrete structures Si and Sj , is defined in terms of function k(., .) that characterizes similarity between

a pair of tuples or labels.

Path/Subsequence Kernels

Let Si and Sj be two sequences of tuples, as in Table 3.1. (Mooney and Bunescu, 2005) define the

kernel as:

K(Si, Sj) =
∑

i,j:|i|=|j|

|i|∏
k=1

k(Si(ik), Sj(jk))λl(i)+l(j).

Here, k(Si(ik), Sj(jk)) is the similarity between the kth tuples in the subsequences i and j, of equal

length; l(.) is the actual length of a subsequence in the corresponding sequence, i.e., the difference between

the end index and start index (subsequences do not have to be contiguous); λ ∈ (0, 1) is used to penalize

the long subsequences.
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Tree Kernels

In (Zelenko et al., 2003), the convolution kernel defines the similarity between two graphs/trees Ti and

Tj , for example between the trees in Figure 3.1(b) and 3.1(c), as:

K(Ti, Tj) =k(Ti.r, Tj .r)(k(Ti.r, Tj .r)

+
∑

i,j:l(i)=l(j)

λl(i)
∑

s=1,··· ,l(i)

K(Ti[i[s]], Tj [j[s]])
∏

s=1,··· ,l(i)

k(Ti[i[s]].r, Tj [j[s]].r)).

Here i, j are child subsequences under the root nodes Ti.r, Tj .r and λ ∈ (0, 1) as shown above; i =

(i1, · · · , il) and Ti[i[s]] are subtrees rooted at the i[s]th child node of Ti.r.

For both kernels above, dynamic programming is used for efficient computation.

3.2.2 Hashing for Constructing k-NN Graphs

A k-NN classifier finds the k-nearest neighbors of a data point per a given kernel function, and then infers

its class label from the class labels of the neighbors.

In computer vision domain, a well-known technique is to approximate a kernel-k-NN graph using

kernel-locality-sensitive hashing (kernel-LSH or KLSH). A smaller subset of data points, SR, of size M ,

is randomly sub-selected from the dataset S of size N , with M as low as N
1
2 . For computing a hash code

of H binary bits of a data point, its kernel similarity is computed w.r.t. the data points in the set SR, as an

input to any kernel-LSH algorithm; a binary hashcode corresponds to a hash bucket. In the final step, the

nearest neighbors of a data point are found by computing its kernel similarity w.r.t. the data points in the

same hash bucket, and optionally the neighboring ones.

In the following, we brief on two KLSH approaches below. One of the approaches is proposed by

(Kulis and Grauman, 2009), and the another one I develop as a minor contribution of this thesis.

KLSH by (Kulis and Grauman, 2009)

One approach to building a binary hash function is to randomly sample a linear-hyperplane in the feature

37



Algorithm 1 Random kNN based Algorithm for Computing KLSH Codes.

Require: Kernel similarity vector k of size M , computed for a structure S; sub-sampling parameter, α,
for randomizing hash function; the number of hash functions, H . % Random subsets, fixed
across structure inputs

1: for j = 1→ H do
2: rhj1 ← randomSubset(M , α)
3: rhj2 ← randomSubset(M , α)
4: c← 0
5: for j = 1→ H do
6: kj1 ← k(rhj1)

7: kj2 ← k(rhj2)
8: if max(kj1 ) > max(kj2 ) then
9: c(j)← 0

10: else
11: c(j)← 1
12: return c

space implied from the kernel functions; for SR of size sublinear in the size of dataset S, one can obtain

only an approximation for the random sampling of linear hyperplane (Kulis and Grauman, 2012). This

approach has limitations in terms of computational cost and numerical instability. The number of data

points in different buckets can be highly uneven with this hash function, as per the experiments discussed

later in this chapter, leading to an increase in kernel computations.

Random kNN based KLSH

As a minor contribution, I build a simple technique, for kernel based binary hash functions. The main

advantages of this hashing approach are, less computational cost as well as the use of non-linear boundaries

instead of linear ones (in the kernel implied feature space).

To build a random binary hash function hj(.), we randomly sample two subsets, S1
l ,S

2
l , from SR.

Having S1
l ,S

2
l , and a given data point Si, the first nearest neighbor of Si is found in both of the subsets

using the convolution kernel similarities. Depending on which of the two data points is the closest to Si,

a binary bit value is obtained. See the pseudo code in Algorithm 1. In the experiments, I find this hash

function as accurate as the above, yet much cheaper in kernel computations.

The number of data points across different buckets is relatively uniform with this KLSH algorithm,

compared to the one in (Kulis and Grauman, 2009), since kNN models are highly data driven. This keeps
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the number of kernel computations low, when finding nearest neighbors in neighboring buckets. Also,

unlike their algorithm, this algorithm doesn’t require computing a kernel matrix between the data points in

SR.

This hashing approach is similar to the one, based on SVMs, proposed in (Joly and Buisson, 2011).

3.3 Nonstationary Convolution Kernels

I propose a generic approach to extend any convolution kernel to a non-stationary one, for higher express-

ibility and generalization.

Definition 1 (Stationary kernel (Genton, 2001)). A stationary kernel, between vectorswi,wj ∈ Rd, is the

one which is translation invariant:

k(wi,wj) = kS(wi −wj),

that means, it depends only upon the lag vector between wi and wj , and not the data points themselves.

For NLP context, stationarity in convolution kernels is formalized in Theorem 1.

Theorem 1. A convolution kernel K(., .), that is itself a function of the kernel k(., .), is stationary if k(., .)

is stationary.

Proof Sketch. Suppose we have a vocabulary set, {l1, · · · , lp, · · · , l2p}, and we randomly generate a set of

discrete structures S = {S1, · · · , SN}, using l1, · · · , lp. For kernel k(., .), that defines similarity between

a pair of labels, consider a case of stationarity, k(li, lj) = k(li+p, lj) = k(li, lj+p); i, j ∈ {1, · · · , p},

where its value is invariant w.r.t. to the translation of a label li to li+p. In the structures, replacing labels

l1, · · · , lp with lp+1, · · · , l2p respectively, we obtain a set of new structures S̄ = {S̄1, · · · , S̄N}. Using

a convolution kernel K(., .), as a function of k(., .), we obtain same (kernel) Gram matrix on the set S̄

as for S. Thus K(., .) is also invariant w.r.t. the translation of structures set S to S̄, hence a stationary

kernel (Def. 1).
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Some examples of kernels k(., .) are:

k(i, j) = I(i = j), k(i, j) = exp(−||wi −wj ||22),

k(i, j) = exp(wT
i wj − 1).

Herein, i, j are words (node/edge labels), and wi, wj are word vectors respectively; I(.) is an indicator

function. The first two kernels are stationary. Whereas the third one is nonstationary mathematically (yet

not expressive enough, as such), though it relies only on the cosine similarity between the word vectors, not

the word-vectors or words themselves. This approach is generic enough for not only extending a stationary

convolution kernel, but a non-stationary convolution kernel as well, accounting for the cases as the latter

one, for a higher flexibility and generalization.

Theorem 2. Any convolution kernel K(., .), can be extended to a valid nonstationary convolution kernel

KNS(., .), by extending the stationary/nonstationary kernel function k(., .) to kNS(., .) as in (3.1), with a

deterministic function σ(.) of any form.

kNS(i, j) = σ(i)k(i, j)σ(j) (3.1)

Proof Sketch. The extended kernel function kNS(i, j) is a valid kernel (Rasmussen and Williams, 2006, p.

95), and therefore,KNS(., .), as a function of kNS(., .), is also a valid convolution kernel. For establishing

the nonstationarity property, following the proof of Theorem 1, if using KNS(., .), we obtain a (kernel)

Gram matrix on the set S̄ that is different from the set S because σ(li) 6= σ(li+p) ∀i ∈ {1, · · · , p} for an

arbitrary selection of σ(.). Therefore KNS(., .) is not invariant w.r.t. the translation of set S to S̄, hence a

nonstationary kernel (Def. 1).

In natural language modeling problems, since k(., .) operates on labels (or a tuple of labels), σ(.) can

be thought of as 1-D embedding of the vocabulary for labels. For σ(.) ∈ R≥0, it is like the strength of

a label in the context of computing the convolution kernel similarity. For instance, if σ(i) = 0, it means
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that the label i should be completely ignored when computing a convolution kernel similarity of a discrete

structure (tree, path, etc.), that contains the (node or edge) label i, w.r.t. another discrete structure, or

itself. Thus, we see that these additional parameters, introduced with the nonstationary model, allow

convolution kernels to be expressive enough to decide if some substructures in a discrete structure should

be ignored. One can also define σ(.) on the vector space representation of the labels (word vectors), like

σ(wi) instead of σ(i).

3.3.1 Nonstationarity for Skipping Sub-Structures

Suppose we are interested in computing the convolution kernel similarity between the paths of tuples —as

in Table 3.1 or between the two trees in Figure 3.1(b), 3.1(c). In both cases, the basic kernel function,

k(., .) operates on a pair of tuples. The nonstationary kernel on tuples can be defined as:

kNS((ei, ni),(ej , nj)) = σeike(ei, ej)σejkn(ni, nj).

The similarity between two tuples (ei, ni) and (ej , nj) is defined as the product of kernels on the edge

labels ei, ej and the node labels ni, nj . In the experiments, the following functions are considered:

ke(ei, ej) = I(ei = ej), kn(ni, nj) = I(ni = nj),

kn(ni, nj)=exp(wT
ni
wnj
−1)((wT

ni
wnj
−γ)/(1−γ))+.

Herein, (.)+ denotes the positive part; γ ∈ (−1, 1) is a sparsity parameter.

One can consider the nonstationary parameters to be binary valued, i.e., σ ∈ {0, 1} (I suggest to keep

binary values only, as a measure for robustness to over-fitting, as well as for keeping the optimization

simple).

In the expression above, non-stationarity parameters are local to edge labels (referred as semantic

labels in this chapter), which come from a language representation (predefined, and small in vocabulary),

41



such as Abstract Meaning Representations (Banarescu et al., 2012), Stanford Dependencies (Chen and

Manning, 2014), etc. Defining the σ parameters local w.r.t. the edge labels (semantic labels), corresponds

to attention on the semantics in the context of convolution kernel computation. For instance, as shown in

Table 3.1, I find that it is more optimal to skip tuples, containing either of the semantic labels arg2, arg0,

op2, example when computing convolution kernel similarity, as σ = 0 for all these labels in the learned

model for the task .3 Thus, the proposed nonstationary approach allows decisions on what to attend in a

linguistic representation of a natural language, and what not to attend. This is very intuitive, as it is close

to how a human mind processes natural language.

Note that, even in the traditional convolution kernels, matching substructures are found while skip-

ping over non-matching elements. Our approach of skipping tuples, as proposed above, allows skipping

tuples even if those tuples are matching when computing similarity between two structures. This aspect of

skipping tuples is more explicit in ignoring sub-structures irrelevant for a given task, unlike the standard

skipping over non-matching tuples; the latter is complementary to ours.

3.4 Stochastic Learning of Kernel Parameters

In this section I discuss the learning of kernel parameters for classification with k-Nearest Neighbor mod-

els.

3.4.1 k-NN based Loss Function

In the above, I introduced a non-stationary extension of convolution kernel similarity by introducing a task-

dependent parameterization of the kernel function. In this section I describe a novel approach for efficiently

learning those parameters in the context of a binary classification problem, especially suitable for k-NN

classifiers. This setup is highly relevant for various structured inference problems in natural language

3arg0, arg2 are not ignored if duplicate data points are kept.
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Algorithm 2 Stochastic-subsampling based minimization of the loss, defined on k-NN, for learning a
convolution kernel.
Require: Training data set S = {S1, · · · , SN}; the number of samples to select randomly, β; the number

of trials for optimizing a parameter value, α; the convolution kernel function K(., .;σ); the semantic-
labels L = {l1, · · · , lp}; k for the global k-NN graph.
% indices of data points, ci, containing a semantic label, li

1: c1, · · · , cp ← getDataIndices(S,L)
2: σ = {σ1, · · · , σp = 1} % parameters, sorted per the frequency of the
labels in descending order
% global k-NN graph for intelligent sampling

3: G← computeNNGraph(S, k,K,σ)
% optimize each tth parameter, iteratively

4: for t = 1 to p do
5: for j = 1 to α do
6: r ← randomSubset(ct, β) % β random samples
7: n← getNN→(G, r, k) % neighbors of r
8: n̄← getNN←(G, r, k) % r as neighbors
9: nn← getNN→(G,n ∪ n̄, 1) % neighbors of n ∪ n̄

10: a← r ∪ n ∪ n̄ ∪ nn % a for loss estimates
11: for v = {0, 1} do
12: σt = v % value v for the tth parameter

% noisy loss estimate for K(., .;σ)
13: Gv

tj ← computeNNGraph(Sa, 1,K,σ) % 1-NN graph on the subset a for
loss estimate

14: Lvtj ← computeLoss(Gv
tj) % loss on Gv

tj

15: σt ← argminv
∑α
j=1 Lvtj

16: return σ={σ1, · · · , σp} % learned σ, in K(., .;σ)
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modeling, where a hypothesized structured inference from a sentence is classified as correct/incorrect.

Note that the loss-function proposed below can be easily extended to multi-class scenarios.

Loss Function 1. Consider N number of training examples—say, sequences of tuples S1, · · · , SN with

corresponding binary labels y1, · · · , yN ∈ {0, 1}. A convolution kernel K(., .;σ) with parameters σ can

be learned by minimizing the loss function,

L =

N∑
i=1

K(Si, S1nn(i);σ)I(yi 6= y1nn(i))−
N∑
i=1

K(Si, S1nn(i);σ)I(yi = y1nn(i) = 1).

For a sequence Si, we correspondingly have the first nearest neighbor of Si within the training data set

itself, i.e., S1nn(i), with a binary label y1nn(i); the function 1nn(.) comes from kernel-based 1-NN graph

construction, optionally using kernel-LSH.

If the binary label of Si, yi, does not match with the binary label of S1nn(i), y1nn(i), then there is loss,

equal to the convolution kernel similarity K(Si, S1nn(i);σ). In the loss function, I also encourage higher

kernel similarity between a sequence and its first nearest neighbor if both are of positive (binary) labels by

using the negative loss term, i.e., reward. The latter should make the kernel function robust w.r.t. noise in

data, acting more like a regularization term.

The loss function is extensible for k > 1, though I argue that it should be sufficient to keep k = 1

during the learning,4 as the loss function is computed using a small subset of training dataset with our

stochastic approximation-based algorithm (discussed next).5

Note that the loss function is similar to the ones used for distance metric learning problems (Weinberger

and Saul, 2009).

3.4.2 Stochastic Subsampling Algorithm

The loss function defined above involves calculating O(N2) pairwise similarities between N data points,

which is computationally prohibitive for large N . Instead, we would like to approximate the loss function
4k = 1 in the loss function makes LSH efficient, too.
5A bagged 1-NN classifier is optimal, as a k-NN model with an optimal value of k (Biau et al., 2010).
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Table 3.2: F1 score (precision, recall), on the positive class. The non-stationary path kernel (NPK), trained
on a subset of the “All” dataset with our hashing function. For inference, k = 8 (k = 4 for PubMed45 since
it is a small data set) in k-NN based classifiers, with hashing used in both approaches “Path Kernel” (PK)
and “Nonstationary Path Kernel” (NPK). I perform five inference trials, for the cases of 80%, 50%, 30%
data sub-selection.

(a) RkNN Hashing Technique

Data sets PK NPK
BioNLP (100%) 42.4 47.2

(43.1, 41.8) (53.7, 42.2)

BioNLP (80%) 41.0± 0.5 43.9 ± 1.3
(40.7, 41.4) (47.7, 40.7)

PubMed45 (100%) 38.7 44.7
(37.8, 39.6) (45.8, 43.7)

PubMed45 (80%) 36.3± 0.9 41.8 ± 1.1
(35.7, 36.8) (42.4, 41.3)

All (100%) 55.0 58.4
(52.5, 57.8) (55.0, 62.2)

All (50%) 50.9± 0.6 54.1± 0.7
(49.5, 52.4) (50.0, 59.0)

All (30%) 48.6± 1.2 51.5± 0.9
(46.7, 50.6) (48.4, 55.1)

(b) Hashing technique of Kulis & Grauman.

Data sets PK NPK
BioNLP (100%) 44.8 46.8

(45.7, 44.0) (52.7, 42.1)

BioNLP (80%) 42.0± 1.0 44.6 ± 1.5
(41.7, 42.2) (49.3, 40.9)

PubMed45 (100%) 38.6 43.5
(39.1, 38.1) (44.9, 42.2)

PubMed45 (80%) 35.5± 0.8 41.7 ± 1.1
(35.6, 35.4) (42.0, 41.4)

All (100%) 54.2 57.9
(52.6, 55.9) (54.6, 61.7)

All (50%) 52.2± 0.4 54.3± 0.6
(50.6, 53.9) (50.9, 58.2)

All (30%) 50.3± 0.6 51.6± 0.8
(48.7, 52.1) (48.2, 55.6)
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by using a small subset of the training data. The naive strategy of random sampling would correspond

to taking a random subset of nodes in the k-NN graph, and then considering the neighborhood edges

only between those nodes. Unfortunately, uniform random sampling of nodes (data points) would be a

crude approximation for the loss function as it would significantly alter (or even completely destroy) local

neighborhood structure for each selected data point. Instead, here I propose to include the neighboring

nodes of a randomly selected node in the subset of data used for computing a loss estimate. Thus, the

problem is how to select the local neighborhoods, which depend upon the kernel function itself that we are

optimizing. This is accomplished as described below.

First, before optimizing the parameters, we compute the nearest neighborhood graph for all the train-

ing data points with a locality-sensitive hashing technique and by using the initialized convolution kernel

function itself; we refer to this as a global k-NN graph, used for building the local neighborhoods approx-

imately.

Now we sample a small subset of data from the training set in a purely random fashion, as the inducing

points. Then we look for the training data which are neighbors of these random selections, or have these

random selections themselves as their neighbors in the k-NN graph; optionally, we also try to include the

first nearest neighbors of the neighbors. Putting all these data points together into a subset, including the

original subset of random selections, we obtain our final subset of the training dataset—what I refer to as

randomly sampled local neighborhoods. We compute a 1-NN graph on this subset of the dataset itself to

compute a noisy estimate of the loss function. As we see, the neighbors (in both directions) of an inducing

point (randomly selected) establish the local neighborhood around it. Even though, in the loss function,

we are interested only in a small neighborhood around a point, i.e., defined from the first nearest neighbor,

we keep k reasonably high in the above global k-NN graph and correspondingly obtain k neighbors of

the inducing point from both directions. This is because the higher value of k (k = 4 in the experiments,

though robust w.r.t. small changes) should make the approach robust to changes in the neighborhood

during the learning (as parameter values change), and also increase the chances for the neighbors of an

inducing point to be neighbors of each other (for less noise in the loss function estimation).
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Table 3.3: F1 score on the positive class. Same settings as for Table 3.2(a).

(a) NPK with lower sampling rates (β)

Data sets β = 550 β = 100 β = 50 β = 25

BioNLP 47.2 47.3 47.1 48.4
(53.7, 42.2) (52.5, 43.0) (52.4, 42.8) (50.9, 46.0)

PubMed45 44.7 42.7 43.0 41.9
(45.8, 43.7) (45.2, 40.4) (42.2, 43.8) (41.8, 42.0)

(b) TK (k = 1)

Data sets TK NTK
BioNLP 38.5 41.8

(37.6, 39.4) (42.0, 41.5)

PubMed45 33.4 37.8
(33.0, 33.8) (36.6, 39.0)

(c) With word2vec

Data sets PK NPK
BioNLP 40.8 43.7

(41.5, 40.2) (44.9, 42.5)

PubMed45 35.0 36.5
(34.0, 36.1) (37.7, 35.3)

(d) Nonunique

Data sets PK NPK
BioNLP 60.2 62.4

(62.2, 58.3) (65.2, 59.8)

PubMed45 36.6 40.5
(44.1, 31.3) (45.9, 36.2)

(e) Individual Training

Data sets PK NPK

BioNLP 41.8 44.5
(43.0, 40.7) (44.0, 45.0)

PubMed45 38.1 42.8
(39.0, 37.3) (42.9, 42.7)
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3.4.2.1 Pseudocode for the Algorithm

The pseudocode for optimizing the semantic-label- based binary parameters is presented in Algorithm 2.

Since a parameter σt is defined locally w.r.t. a semantic label lt, we obtain the indices of data points (ct),

in the training set S, that contain the semantic label; these data should be immediately relevant for the

optimization of the parameter as the superset of the inducing points (see line 1 in Algorithm 2). All the

binary parameters, σ = {σ1, · · · , σp}, are initialized to value one, which corresponds to equal attention to

all types of semantics in the beginning, i.e., the baseline convolution kernel (line 2). During the optimiza-

tion, as we would learn zero values for some of the parameters, the kernel function would drift away from

the baseline kernel and would become more non-stationary, accounting for only a subset of the semantic

labels in its computations.

Next, after the initialization of the binary parameters, we compute the global k-NN graph on the train-

ing data set S, using the kernel K(., .;σ) with the parameters σ (line 3).

For learning these binary parameters, σ, I find that a simple iterative procedure does a good job (line

4), though the algorithm should be easily extensible for more sophisticated techniques such as MCMC

sampling. For optimizing a tth parameter, σt, we perform α number of trials (line 5).

In each trial, a subset of the training set, with indices a, is obtained using our sampling technique (lines

6-10), starting with β number of randomly selected inducing points. The next step within the trial is to

compute the loss function (line 14) for each possible value of σt (i.e., {0, 1}) by computing a 1-NN graph

on the subset of samples Sa (line 13), and then obtaining the value of σt with a minimum sum of the noisy

loss estimates (line 15).

In the algorithm, the global k-NN graph (line 3), and the 1-NN graphs (line 13) can be computed

with the kernel-LSH, as done in the experiments; same applies to the inference phase after learning the

parameters.

Next, I discuss the empirical results.
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Table 3.4: F1 score on the positive class. Same settings as for Table 3.2(a).

(a) β = 25, multiple runs of the algorithm for NPK

Data sets PK iter = 1 iter = 3 iter = 6 iter = 9

BioNLP 42.4 46.4 44.0 47.2 47.4
(43.1, 41.8) (51.7, 42.0) (49.8, 39.4) (53.7, 42.2) (51.0, 44.2)

PubMed45 38.7 41.9 41.9 44.7 41.1
(37.8, 39.6) (42.7, 41.1) (44.7, 39.4) (45.8, 43.7) (41.6, 40.7)

(b) Pr- Pure Random.

Data sets PK β = 100 β = 1000 (PR) β = 550 β = 5000 (PR)

BioNLP 42.4 47.3 42.4 47.2 43.7
(43.1, 41.8) (52.5, 43.0) (43.1, 41.8) (53.7, 42.2) (48.3, 39.9)

PubMed45 38.7 42.7 40.1 44.7 41.8
(37.8, 39.6) (45.2, 40.4) (40.1, 40.0) (45.8, 43.7) (44.7, 39.3)

3.5 Empirical Evaluation

For the evaluation of the proposed nonstationary convolution kernels, I consider the relation extraction task

as described in Section 5.1.

Relation Extraction from Semantic Graphs

In reference to Figure 3.1, each sentence is parsed into an Abstract Meaning Representation (AMR)

graph (Pust et al., 2015a), and from the list of entity nodes and interaction type nodes in the graph, a set of

candidate biomolecular interactions are generated—each involving up to three entities with different roles,

and an interaction type. Each candidate structure (a biomolecular interaction in this case), as a hypothe-

sized inference, is classified as positive/negative, either using the corresponding subgraph as features (as

in Figure 3.1(b), 3.1(c)) with tree kernels, or a subgraph can be post-processed into a path (see Table 3.1)

if using path kernels.

Data Sets

I use three datasets, including two public ones, PubMed45-ERN (Garg et al., 2016) and BioNLP (2009,
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11,13) (Kim et al., 2009, 2011; Nédellec et al., 2013), and an unpublished one; I refer to PubMed45-

ERN simply as PubMed45 in this chapter though PubMed45 refers to a subset of PubMed45-ERN in the

previous chapter. Putting all the datasets together, referred as “All” dataset, we have approximately 100k

unique data points (20k and 30k from the PubMed45 and BioNLP datasets respectively), with uniqueness

defined on the path tuples to avoid artificial redundancies in the evaluation, although this decreases the

overall accuracy numbers as canonical examples are counted only once. I also show results for non-

unique paths, in Section 3.5.1.2, which can be compared to other published results on the datasets.

Settings for the Learning of the Proposed Model Parameters

In the evaluation setup, I randomly divide the full dataset into two halves, and use the first half (with

approximately N=50k samples) to learn the proposed nonstationary convolution kernel with the proposed

Algorithm 2; I set β = 550, α = 10, and learn σ for the top 50% frequent semantic (edge) labels, i.e.,

61 binary parameters. Whenever computing k-NN graphs, I use kernel-LSH (H=14), using the proposed

hashing function (RkNN) in Section 3.2. 6

For building a k-NN graph with hashing in the learning algorithm, I keep M (defined in Section 3.2.2)

approximately equal to the square root of the number of nodes in k-NN; for the inference purposes, I keep

M=100 fixed across all the datasets.

In the convolution kernels, λ = 0.8, which is set from preliminary tunings, as well as the use of the

learning algorithm itself. For β = 550, i.e., the primary configuration on the sample size when learning

the model on all the data sets together, it takes approximately 12 hours on a 16-core machine to optimize

the parameters (a kernel matrix computing is parallelized); I also try β = 25, taking an hour for learning

the model.
6H=14 is simply from the observation that it should be a little less than the log2(.) of the data set size so that a constant number

of data points land in a hash bucket.
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Table 3.5: Loss function convergence.

Models β = 200 (25) β = 500 (25) β = 1000 (25) All data points

PK 7.7e-3±4.9e-3 8.0e-3±3.2e-3 6.2e-3±1.5e-3 4.5e-3

NPK 3.9e-3±6.5e-3 2.3e-3±4.4e-3 2.0e-3±3.2e-3 2e-3

3.5.1 Evaluation Results

The convolution path kernel with the 61 binary parameters, referred to as Nonstationary Path Kernel (NPK)

and optimized on the training subset from the All dataset, is evaluated w.r.t. the standard (conventional)

path kernel (PK), across the individual public datasets PubMed45 and BioNLP, as well as the All dataset.

For the evaluation of the two kernels, using k-NN classifier with hashing, I split a given data set randomly

into two equal parts, with the first half for building a k-NN classifier that is tested on the second half. I

have multiple inference evaluations with varying percentages of data sub-sampled from each of the two

parts (5 trials).

The results are presented in Table 3.2(a), in terms of classification accuracy (F1-score, precision, recall)

for the positive class. We see significant improvement in accuracy numbers over the baseline standard

path kernel, with the improvements even more significant for the two public datasets. We obtained this

improvement just with the addition of the 61 binary parameters to the baseline kernel, corresponding

to NPK. It is even more interesting to note that only 20 of the 61 parameters have zero values learned—

thereby solely contributing to the improvements. Since the model is trained on all the datasets put together,

it is further interesting to note that the learned model performs well for the individual public datasets,

despite distribution changes across data sets in terms of positive ratios as well as language itself.

Further, I verify if the same model parameters, learned with my RkNN hashing technique (see Sec-

tion 3.2), generalize to the hashing technique of (Kulis and Grauman, 2012). In Table 3.2(b), we show

the classification accuracies with their hashing technique. While there is not much difference between

accuracy numbers across the two choices for hashing, we do see that NPK outperforms PK, even with this

hashing technique.
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3.5.1.1 Varying Parameter & Kernel Settings

Lower Sampling Rates

Keeping the same setup as that used for producing the results in Table 3.2(a), but lowering the parameter

β, in Algorithm 2,7 I obtain results shown in Table 3.3(a). The accuracy numbers decrease marginally with

lower values of β, down to β = 25, that correspond to smaller subsets of data during the learning. This

leads to more noisy estimates of the loss function, but lesser computational cost. It should be noted that

all of these nonstationary models learned with high stochasticity, outperform the standard path kernel (in

Table 3.2(a)) significantly.

Tree Kernels

Using the same setup for learning (a single model trained on all the data sets) as well as inference,

I evaluate the proposed approach for tree kernels, with the results presented in Table 3.3(b). The non-

stationary tree kernels (NTK) outperform the standard tree kernels (TK), though the overall numbers are

not as good as with the path kernels.8 Also, it is interesting that k = 1 is optimal in the inference for tree

kernels, possibly because the dimension of the features space implied from tree kernels is very high.

Use of Word Vectors in Path Kernels

The proposed approach is generic enough for applicability to convolution kernels using word vectors. I

compare NPK approach w.r.t. PK,9 both using word vectors, and find that the nonstationary model helps

in this scenario as well; see Table 3.3(c).10

7For β ≤ 50, β = 100, we use H=8, H=10 respectively.
8One possible reason for the overall low numbers with tree kernels is this: In Table 3.1(b), if we exchange the colors of the entity

nodes, and so the respective roles, the hypothesized interaction changes, becomes invalid from valid, while the tree remains very
similar; the path would change significantly, as obtained from tree-traversal as per the node colors.

9Sparsity parameters, γ, is tuned to value 0.6.
10The overall accuracy numbers are less when using word vectors, partially because there is no domain mismatch in terms of

vocabulary when splitting the set of unique path tuples randomly into training-test sets (in such scenarios, there is not much difference
in accuracy, whether we use word vectors or not, be it our path kernels or the baseline path kernels).
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Table 3.6: F1 score, on the positive class w.r.t. other classifiers. Same settings as for Table 3.2(a).

Data sets PK-k-NN NPK-kNN-H PK-SVM LSTM Conv. LSTM

BioNLP 47.3 47.2 38.3 46.0 44.1
(54.6, 41.7) (53.7, 42.2) (61.5, 27.8) (65.7, 35.4) (63.8, 33.7)

PubMed45 45.3 44.7 40.2 34.3 40.9
(51.5, 40.4) (45.8, 43.7) (53.0, 32.5) (47.8, 26.7) (47.0, 36.2)

3.5.1.2 Non-Unique Path Tuples

In Table 3.3(d), I present experimental results where duplicate path tuples are kept in the datasets (β =

130, i.e., 0.2% of training data). For the BioNLP data set, I use the BioNLP-2013-development subset

for testing, and the rest for building the k-NN classifiers. For the PubMed dataset, I use six papers for

testing (approx. 10% data points), and the rest for building the classifier. For both datasets, NPK give

better accuracy than PK. These numbers, in Table 3.3(d), can also be compared to the previously published

evaluation numbers on the datasets.

3.5.1.3 Analysis of the Learning Algorithm

Analysis of the Loss Function

In Table 3.5 I present the loss (rather than the F1 score) of the standard path kernel model, as well as the

nonstationary path kernel model (β = 100). For computing the loss of a given (already trained) model, I

use the same sampling technique as proposed for learning, with β = 200, 500, 1000 corresponding to the

different columns in the table, and also compute the loss on all the training data (with no sampling). The

numbers in the last column “All data” validate that the loss function value is reduced with our nonstationary

model parameters compared to the standard path kernel, from 4.5e−3 to 2e−3. The loss function variation

w.r.t. the sampling rate β establishes on empirical convergence of the approximate loss computed with the

sampling technique, w.r.t. to the loss computed on all the data.

Multiple Runs of the Algorithm for Learning

I also perform the experiment of running the algorithm multiple times wherein, after each iteration, the
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global k-NN graph is recomputed as per the change in the kernel function (β = 25); the models learned

across different iterations are evaluated as presented in Table 3.4(a). While all the models, learned across

different iterations, have a much better accuracy compared to the standard path kernel (baseline), the

accuracy doesn’t seem to always increase with more iterations, partly due to the high noise from the low

sampling rate. This should mean that the learning is not highly sensitive to the fine grained structure of the

global k-NN graph, while the value of β plays more significant role, as we get much better accuracy for

β = 550 above, even with a single iteration, than the model obtained from 10 iterations of learning with

β = 25.

Experiments with Pure Random Sampling

While keeping the same nonstationary model, a possible baseline approach for the learning could be

sampling the data in a pure random fashion rather than using the proposed sampling technique; see Ta-

ble 3.4(b). For this baseline, we sample only the β inducing points in Algorithm 2, and not the neigh-

bors (suffix “(PR)”). Clearly, the strategy of just pure random sampling doesn’t work well.

3.5.1.4 Individual Models Learned on Datasets

For a further evaluation, I also train the model individually for each of the two public datasets, PubMed45

and BioNLP. The experimental settings are the same, using 50% random selections for training, and the

rest for inference. The value for parameter β is 3% of the training subset size (i.e., approximately, β = 300,

β = 450 for the PubMed45 and BioNLP training subsets respectively); I set, H=10, as the training data

set size is smaller than above, while using the proposed hashing technique (RkNN) in both learning and

inference tasks. The results are presented in Table 3.3(e). Although NPK outperforms the standard path

kernel more significantly for the PubMed45 dataset, the improvements are less than what we achieved

when training the model on all the datasets together.
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3.5.1.5 Comparison with Other Classifiers

Finally, I compare the proposed nonstationary path kernel-based k-NN classifier using the kernel-LSH (the

same classifier as “NPK” in Table 3.2(a)), denoted as “NPK-kNN-H” here, w.r.t. other kernel-based clas-

sifiers, as well as neural network baselines; see Table 3.6. Other kernel-based classifiers, all using the

standard path kernels, include k-NN without using hashing (“PK-k-NN”, k=4), and SVM (“PK-SVM”,

C=1). All these classifiers are expensive to compute as they require full Gram matrices, with O(N2)

number of kernel computations. The hashing-based version of“PK-k-NN” corresponds to “PK” in Ta-

ble 3.2(a). Clearly, there is a significant decrease in accuracy for standard path kernels when using hash-

ing. In Table 3.6 11 I demonstrate that the nonstationary path kernel-based k-NN model (“NPK-kNN-H”),

despite the hashing-based approximations, performs as good as the PK-k-NN, and both methods outper-

form all the other classifiers, including the neural network models LSTM and convolution-LSTM (label

frequency-based 32-bit embeddings are used in the LSTM models, with “ReLU” units). The advantage of

“NPK-kNN-H” over the “PK-k-NN” is the reduction in kernel computations (O(N1.5) from O(N2)), due

to hashing.

3.6 Related Work

Nonstationary kernels have been explored for modeling spatiotemporal environmental dynamics or time

series relevant to health care, finance, etc., in which the challenge in learning is due to the high number

of local parameters, scaling linearly with dataset size (Assael et al., 2014; Le et al., 2005; Paciorek and

Schervish, 2003; Snelson et al., 2003; Rasmussen and Ghahramani, 2002; Higdon, 1998; Sampson and

Guttorp, 1992). The number of nonstationary parameters in our NLP model is a small constant, though the

cost of computing kernels is much higher compared to the kernels relevant for those domains.

In neural language models (Hochreiter and Schmidhuber, 1997; Mikolov et al., 2010; Sundermeyer

et al., 2012), it is challenging to remember a long sequence (Mikolov et al., 2014), as well as forgetting

11For k-NN, accuracy variation w.r.t. k is minimal, so I do a preliminary tuning using a much smaller subset, whereas for other
methods, I either perform validation based tuning, or choose the best accuracy numbers from the parameters space.
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some parts of it (Gers et al., 1999; Zhang et al., 2015; Yu et al., 2017), with some success attained in the

recent past on these problems. On the other hand, convolution (path or subsequence) kernels, implicitly,

try to remember entire sequences (leads to less efficient language modeling if text is noisy), and this work

allows skipping some of the tuples in sequences, i.e. forgetting.

The idea of skipping tuples in convolution kernels had been previously explored relying on sub-

structure mining algorithms (Suzuki et al., 2004; Suzuki and Isozaki, 2006; Severyn and Moschitti, 2013).

Recently, it is proposed to learn weights of sub-structures for regression problems within Gaussian process

modeling framework (Beck et al., 2015). In this chapter, I show that my principled approach of nonsta-

tionary extension of a convolution kernel leads to an additional parameterization that allows learning the

skipping of tuples as a special case. Further, for k-NN classifiers, I propose an efficient stochastic sampling

based algorithm, along with an appropriate loss function, for scalable learning of the parameters with hun-

dreds of thousands of data in a training set. In contrast, the previous works do not scale beyond a couple of

thousand data in a train set. Moreover, as reported in (Beck et al., 2015), the introduced parameterization

can lead to overfitting in their work whereas our stochastic sampling based learning ensures robustness to

such issues. Also note that, my approach of skipping tuples through non-stationarity is more explicit in

ignoring sub-structures irrelevant for a given task, and complementary to the standard skipping over non-

matching tuples that is a common aspect in most of the existing (sparse) convolutions kernels (Zelenko

et al., 2003; Mooney and Bunescu, 2005; Tkachenko and Lauw, 2015).

It is also interesting to note that most of the previous works, which explored convolution kernels for

various NLP tasks, used Support Vector Machine (SVM) classifiers. The use of a kernel-SVM would

have been appropriate if a convolution kernel projects natural language structures into a higher dimen-

sional (kernel implied) features space wherein the structures from different classes were linearly separable.

Unfortunately, unlike kernels operating on non-structured inputs, the existing convolution kernels (meant
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for structured inputs) are not guarantied to have such properties of higher dimensional mappings. This mo-

tivates us to explore k-NN like non-linear classifiers in this work as those have non-linear class boundaries

even in the kernel implied feature space, in contrast to SVMs. 12

3.7 Chapter Summary

In this chapter, I proposed a novel nonstationary extension of convolution kernels by introducing a data-

driven parameterization of the kernel similarity function. The extended kernels have better flexibility and

expressibility of language representations, compared to conventional convolution kernels used in natural

language tasks. I validated the proposed approach in a set of experiments for the relation extraction task,

and observed significant improvement of accuracy numbers over the state-of-the-art methods across several

data sets. The learned models are highly interpretable, as the zero values of the parameters correspond to a

list of semantic labels and corresponding substructures that are ignored during kernel computation over the

semantic graph. I also proposed a tractable learning method based on a stochastic-sampling algorithm, and

demonstrated that keeping the sampling rate low has only a moderate adverse impact on accuracy, while

yielding significant gains in computational efficiency.

12The use of kNN models has been discouraged in high dimensional euclidean spaces, due to the difficulty of learning appropriate
distance/similarity functions; however, such difficulties should not arise for structured inputs.
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Chapter 4

Learning Kernelized Hashcode Representations

In the previous chapter, I demonstrated that kernelized locality-sensitive hashing (KLSH) (Kulis and Grau-

man, 2009; Joly and Buisson, 2011) allows to reduce the number of kernel computations to O(N) by

providing efficient approximation for constructing kNN graphs. However, KLSH only works with classi-

fiers that operate on kNN graphs. Thus, the question is whether scalable kernel locality-sensitive hashing

approaches can be generalized to a wider range of classifiers.

One of the core contributions of this thesis is a principled approach for building explicit representa-

tions for structured data, as opposed to implicit ones employed in prior kNN-graph-based approaches, by

using random subspaces of KLSH codes. The intuition behind this proposed approach is as follows. If

we keep the total number of bits in the KLSH codes of NLP structures relatively large (e.g., 1000 bits),

and take many random subsets of bits (e.g., 30 bits each), we can build a large variety of generalized

representations corresponding to the subsets, and preserve detailed information present in NLP structures

by distributing this information across those representations.1 The main advantage of the proposed repre-

sentation is that it can be used with arbitrary classification methods, besides kNN such as, for example,

random forests (RF) (Ho, 1995; Breiman, 2001). Figure 4.2 provides high-level overview of the proposed

approach.

1Compute cost of KLSH codes is linear in the number of bits (H), with the number of kernel computations fixed w.r.t. H .
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Figure 4.1: On the left, a parse tree of a sentence is shown. In the sentence, the tokens corresponding to bio-
entities (proteins, chemicals, etc.) or interaction types are underlined. I highlight the result of extracting
one relation from the sentence, using color-coding for its constituents: an interaction type (green) and
bio-entities either participating in the interaction (red), or catalyzing it (orange). From two extraction
candidates (valid/invalid), I obtain subgraphs from the parse tree, used as structural features for binary
classification of the candidates.

Another major contribution of this thesis is a theoretically justified and computationally efficient method

for optimizing the KLSH representation with respect to: (1) the kernel function parameters and (2) a ref-

erence set of examples w.r.t. which kernel similarities of data samples are computed for obtaining their

KLSH codes. The proposed optimization method maximizes an approximation of mutual information

between KLSH codes of NLP structures and their class labels.2 In addition, the parameters resulting from

the non-stationary extension that I introduced in the previous chapter, are also learned by maximizing the

mutual information approximation.

I validate the proposed model on the relation extraction task using four publicly available datasets.

Significant improvements are observed in F1 scores w.r.t. the state-of-the-art methods, including recurrent

neural nets (RNN), convnets (CNN), and other methods, along with large reductions in the computational

complexity as compared to the traditional kernel-based classifiers.

2See our code here: github.com/sgarg87/HFR.
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In summary, the contributions of my thesis, discussed in this chapter (Garg et al., 2019), are as fol-

lows: (1) I propose an explicit representation learning for structured data based on kernel locality-sensitive

hashing (KLSH), and generalize KLSH-based approaches in information extraction to work with arbitrary

classifiers; (2) I derive an approximation of mutual information and use it for optimizing the proposed

models, including the nonstationary kernel based models; (3) I provide an extensive empirical evaluation

demonstrating significant advantages of the approach versus several state-of-art techniques.

4.1 Background

As indicated in Figure 4.1, the relation extraction task is mapped to a classification problem, where each

candidate interaction as represented by a corresponding (sub)structure is classified as either valid or invalid.

Let S = {Si}Ni=1 be a set of data points representing NLP structures (such as sequences, paths, graphs)

with their corresponding class labels, y = {yi}Ni=1. Our goal is to infer the class label of a given test

data point S∗. Within the kernel-based methods, this is done via a convolution kernel similarity function

K(Si, Sj ;θ) defined for any pair of structures Si and Sj with kernel-parameter θ, augmented with an

appropriate kernel-based classifier (Garg et al., 2016; Srivastava et al., 2013; Culotta and Sorensen, 2004;

Zelenko et al., 2003; Haussler, 1999).

4.1.1 Kernel Locality-Sensitive Hashing (KLSH)

Previously, Kernel Locality-Sensitive Hashing (KLSH) was used for constructing approximate kernelized

k-Nearest Neighbor (kNN) graphs (Joly and Buisson, 2011; Kulis and Grauman, 2009). The key idea of

KLSH as an approximate technique for finding the nearest neighbors of a data point is that rather than

computing its similarity w.r.t. all other data points in a given set, the kernel similarity function is computed

only w.r.t. the data points in the bucket of its hashcode (KLSH code). This approximation works well in

practice if the hashing approach is locality sensitive, i.e. data points that are very similar to each other are

assigned hashcodes with minimal Hamming distance to each other.
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Figure 4.2: On the left, I show a subgraph from Figure 4.1 which has to be classified (assuming binary
classification). The subgraph is mapped to a high-dimensional, kernel similarity-based locality-sensitive
hashcode (c), and use it as a feature vector for an ensemble classifier. For instance, an efficient and intuitive
approach is to train a Random Forest on binary kernel-hashcodes; in the figure, the nodes in a decision
tree makes decisions simply based on hashcode bit values, where each bit represents presence or absence
of some structural pattern in the subgraph.
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Herein, I brief on the generic procedure for mapping an arbitrary data point Si to a binary kernel-

hashcode ci ∈ {0, 1}H , using a KLSH technique that relies upon the convolution kernel functionK(., .;θ).

Let us consider a set of data points S that might include both labeled and unlabeled examples. As a

first step in constructing the KLSH codes, we select a random subset SR ⊂ S of size |SR| = M , which

I call a reference set; this corresponds to the grey dots in the left-most panel of Figure 4.3. Typically, the

size of the reference set is significantly smaller than the size of the whole dataset, M � N .

Next, let ki be a real-valued vector of size M , whose j–th component is the kernel similarity between

the data point Si and the j–th element in the reference set, ki,j = K(Si, S
R
j ;θ). Further, let hl(ki),

l = 1, · · · , H , be a set of H binary valued hash functions that take ki as an input and map it to binary bits

and let h(ki) = {hl(ki)}Hl=1. The kernel hashcode representation is then given as ci = h(ki).

I now describe a specific choice of hash functions hl(.) based on nearest neighbors, called as Random

k Nearest Neighbors (RkNN). For a given l, let S1
l ⊂ S

R and S2
l ⊂ S

R be two randomly selected, equal-

sized and non-overlapping subsets of SR, |S1
l | = |S2

l | = α, S1
l ∩ S

2
l = ∅. Those sets are indicated by

red and blue dots in Figure 4.3. Furthermore, let k1i,l = maxS∈S1
l
K(Si, S) be the similarity between Si

and its nearest neighbor in S1
l , with k2i,l defined similarly (indicated by red and blue arrows in Figure 4.3).

Then the corresponding hash function is:

hl(ki) =


1, if k1i,l < k2i,l

0, otherwise

. (4.1)

Pictorial illustration of this hashing scheme is provided in Figure 4.3, where Si’s nearest neighbors in

either subset are indicated by the red and blue arrows. 3 4

The same principle of random sub-sampling is applied in KLSH techniques previously proposed in

(Kulis and Grauman, 2009; Joly and Buisson, 2011). In (Joly and Buisson, 2011), hl(.) is built by learning

a (random) maximum margin boundary (RMM) that discriminates between the two subsets, S1
l and S2

l .

3Small value of α, i.e. 1 6� α�M , should ensure that hashcode bits have minimal redundancy w.r.t. each other.
4In RkNN, since α 6� 1, k = 1 should be optimal (Biau et al., 2010).
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Figure 4.3: An illustration of the KLSH technique, Random K Nearest Neighbors (RkNN). First, one
obtains a small subset (gray dots) from a super set of NLP structures as a reference set SR that is used for
constructing hash functions. For each hash function, two random subsets from the gray dots are obtained,
denoted by red and blue. For a given structure, its kernel-based 1-nearest neighbor is found in both of the
subsets as indicated by the arrows. Depending on which of the two 1-NNs–either the red 1-NN or the blue
1-NN—is the nearest to the sample, hash function h1(.) assigns value zero or one to the sample. The same
procedure applies to h2(.). In this manner, hashcodes are generated with a large number of bits as explicit
representations of NLP structures.

In (Kulis and Grauman, 2009), hl(.) is obtained from S1
l ∪ S

2
l , which is a (approximately) random linear

hyperplane in the kernel implied feature space; this is referred to as “Kulis” here.

In summary, I define klsh(.;θ,SR) as the function, that is parameterized by θ and SR, and maps an

input data point Si to its KLSH code ci, using the kernel function K(., .;θ) and the set of hash functions

h(.) as subroutines.

ci = klsh(Si;θ,S
R); ci = h(ki); ki,j = K(Si, S

R
j ;θ) (4.2)

Next, in Section 4.2, I propose an approach for learning KLSH codes as generalized representations of

NLP structures for classification problems.

4.2 KLSH for Representation Learning

I propose a novel use of KLSH where the hashcodes (KLSH codes) can serve as generalized representa-

tions (feature vectors) of the data points. Since the KLSH property of being locality sensitive (Indyk and
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Motwani, 1998) 5 ensures the data points in the neighborhood of (or within the same) hashcode bucket are

similar, hashcodes should serve as a good representation of the data points.

In contrast to the use of KLSH for k-NN, after obtaining the hashcodes for data points, this approach

ignores the step of computing kernel similarities between data points in the neighboring buckets. In kNN

classifiers using KLSH, a small number of hashcode bits (H), corresponding to a small number of hashcode

buckets, generate a coarse partition of the feature space—sufficient for approximate computation of a kNN

graph. In my representation learning framework, however, hashcodes must extract enough information

about class labels from the data points, so we propose to generate longer hashcodes, i.e. H � 1. It is

worthwhile noting that for a fixed number of kernel computations M per structure Si (|SR| = M ), a large

number of hashcode bits (H) can be generated through the randomization principle with computational

cost linear in H .

Unlike regular kernel methods (SVM, kNN, etc.), I propose to use kernels to build an explicit feature

space, via KLSH. Referring to Figure 4.3, when using RkNN technique to obtain ci for Si, lth hashcode

bit, ci,l, should correspond to finding a substructure in Si, that should also be present in its 1-NN from

either the set S1
l or S2

l , depending on the bit value being 0 or 1. Thus, ci represents finding important

substructures in Si in relation to SR. The same should apply for the other KLSH techniques.

4.2.1 Random Subspaces of Kernel Hashcodes

The next question is how to use the binary-valued representations for building a good classifier.

Intuitively, not all the bits may be matching across the hashcodes of NLP structures in training and test

datasets; a single classifier learned on all the hashcode bits may overfit to a training dataset. This is espe-

cially relevant for bio-information extraction tasks where there is a high possibility of mismatch between

training and test conditions (Airola et al., 2008; Garg et al., 2016); for e.g., in biomedical literature, the

mismatch can be due to high diversity of research topics, limited data annotations, variations in writing

5See a formal definition of locality-sensitive hashing in (Indyk and Motwani, 1998, Definition 7 in Sec. 4.2).
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styles including aspects like hedging, etc. So I adopt the approach of building an ensemble of classifiers,

with each one built on a random subspace of hashcodes (Zhou, 2012; Ho, 1998).

For building each classifier in an ensemble of R classifiers, η bits are selected randomly from H � 1

hash bits; for inference on a test NLP structure S∗, I take mean statistics over the inferred probability

vectors from each of the classifiers, as it is a standard practice in ensemble approaches. Another way of

building an ensemble from subspaces of hashcodes is bagging (Breiman, 1996). If we use a decision tree

as a classifier in ensemble, it corresponds to a random forest (Ho, 1995; Breiman, 2001).

It is highly efficient to train a random forest (RF) with a large number of decision trees (R� 1), even

on long binary hashcodes (H � 1), leveraging upon the fact that decision trees can be very efficient to

train and test on binary features.

4.3 Supervised Optimization of KLSH

In this section, I propose a framework for optimization of the KLSH codes as generalized representations

for a supervised classification task. As described in Section 4.1.1, the mapping of a data point (an NLP

structure S) to a KLSH code depends upon the kernel functionK(., .;θ) and the reference setSR (4.2). So,

within this framework, the KLSH codes are optimized via learning the kernel parameters θ, and optionally

the reference set SR. One important aspect of the proposed optimization setting is that the parameters

under optimization are shared between all the hash functions jointly, and are not specific to any of the hash

functions.

4.3.1 Mutual Information as an Objective Function

Intuitively, we want to generate KLSH codes that are maximally informative about the class labels. Thus,

for optimizing the KLSH codes, a natural objective function is the mutual information (MI) between KLSH

codes of S and the class labels, I(c : y) (Cover and Thomas, 2006).
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θ∗,SR
∗ ← arg max

θ, SR:SR⊂S
I(c : y); c = klsh(S;θ,SR) (4.3)

The advantage of MI as the objective, being a fundamental measure of dependence between random

variables, is that it is generic enough for optimizing KLSH codes as generalized representations (feature

vectors) of data points to be used with any classifier. Unfortunately, exact estimates of MI function in

high-dimensional settings is an extremely difficult problem due to the curse of dimensionality, with the

present estimators having very high sample complexity (Kraskov et al., 2004; Walters-Williams and Li,

2009; Singh and Póczos, 2014; Gao et al., 2015; Han et al., 2015; Wu and Yang, 2016; Belghazi et al.,

2018).6 Instead, here it is proposed to maximize a novel, computationally efficient, good approximation of

the MI function.

4.3.2 Approximation of Mutual Information

To derive the approximation, I express the mutual information function as, I(c : y) = H(c) − H(c|y),

withH(.) denoting the Shannon entropy. For binary classification, the expression simplifies to:

I(c : y) = H(c)− p(y = 0)H(c|y = 0)− p(y = 1)H(c|y = 1).

To compute the mutual information, we need to efficiently compute joint entropy of KLSH code bits,

H(c). We propose a good approximation of H(c), as described below; same applies for H(c|y = 0) and

H(c|y = 1).

6The sample complexity of an entropy estimator for a discrete variable distribution is characterized in terms of its support size s,
and it is proven to be not less than s/ log(s) (Wu and Yang, 2016). Since the support size for hashcodes is exponential in the number
of bits, sample complexity would be prohibitively high unless dependence between the hash code bits is exploited.
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H(c) =

H∑
l=1

H(cl)− T C(c) ≈
H∑
l=1

H(cl)− T C(c; z∗); (4.4)

T C(c; z) = T C(c)− T C(c|z). (4.5)

In Eq. 4.4, the first term is the sum of marginal entropies for the KLSH code bits. Marginal entropies

for binary variables can be computed efficiently. Now, let us understand how to compute the second term

in the approximation (4.4). Herein, T C(c; z) describes the amount of Total Correlations (Multi-variate

Mutual Information) 7 within c that can be explained by a latent variables representation z.

z∗ ← arg max
z:|z|=|c|

T C(c; z) (4.6)

An interesting aspect of the quantity T C(c; z) is that one can compute it efficiently for optimized z∗

that explains maximum possible Total Correlations present in c, s.t. T C(c|z) ≈ 0. In (Ver Steeg and

Galstyan, 2014), an unsupervised algorithm called CorEx 8 is proposed for obtaining such latent variables

representation. Their algorithm is efficient for binary input variables, demonstrating a low sample com-

plexity even in very high dimensions of input variables. Therefore it is particularly relevant for computing

the proposed joint entropy approximation on hashcodes. For practical purposes, the dimension of latent

representation z can be kept much smaller than the dimension of KLSH codes, i.e. |z| � H . This helps to

reduce the cost for computing the proposed MI approximation to negligible during the optimization (4.3).

Denoting the joint entropy approximation as H̄(c), we express the approximation of the mutual infor-

mation as:
7“Total correlation” was defined in (Watanabe, 1960).
8https://github.com/gregversteeg/CorEx
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Ī(c : y) = H̄(c)− p(y = 0)H̄(c|y = 0)− p(y = 1)H̄(c|y = 1).

For computation efficiency as well as robustness w.r.t. overfitting, I use small random subsets (of size

γ) from a training set for stochastic empirical estimates of Ī(c : y), motivated by the idea of stochastic

gradients (Bottou, 2010). For a slight abuse of notation, when obtaining an empirical estimate of Ī(c : y)

using samples set {C,y}, I simply denote the estimate as: Ī(C : y). Here it is also interesting to note

that computation of Ī(c : y) is very easy to parallelize since the kernel matrices and hash functions can be

computed in parallel.

It is worth noting that in the proposed approximation of the MI, both terms need to be computed. In

contrast, in the previously proposed variational lower bounds for MI (Barber and Agakov, 2003; Chalk

et al., 2016; Gao et al., 2016; Alemi et al., 2017), MI is expressed as, I(c : y) = H(y) − H(y|c), so as

to obtain a lower bound simply by upper bounding the conditional entropy term with a cross entropy term

while ignoring the first term as a constant. Clearly, these approaches are not using MI in its true sense,

rather using conditional entropy (or cross entropy) as the objective. Further, the proposed sapproximation

of MI also allows semi-supervised learning as the first term is computable even for hashcodes of unlabeled

examples.

4.3.3 Algorithms for Optimization

Using the proposed approximate mutual information function as an objective, one can optimize the kernel

parameters either using grid search or an MCMC procedure.

For optimizing the reference set SR (of size M ) as a subset of S, via maximization of the same

objective, I propose a greedy algorithm with pseudo code in Algorithm 3. Initially, SR is initialized with

a random subset of S (line 1). Thereafter, Ī(.) is maximized greedily, updating one element in SR in each

greedy step (line 3); greedy maximization of MI-like objectives has been successful (Gao et al., 2016;
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Algorithm 3 Optimizing Reference Set for KLSH

Require: Train dataset, {S,y}; size of the reference set, M ; β, γ are number of samples from S, as
candidates for SR, and for computing the objective, respectively.

1: SR ← randomSubset(S, M ) % M samples from S
2: % optimizing the reference set up to size M greedily
3: for j = 1→M do
4: Seo,yeo ← randomSubset({S,y}, γ) % γ samples from S for estimating the

objective Ī(.).
5: Scr ← randomSubset(S, β) % β samples from S as choices for selection to

SR

6: % iterate over candidates elements for greedy step
7: for q = 1→ β do
8: SRj ← Scrq % Scrq is a choice for selection to SR

9: ceoi ← klsh(Seoi ; θ, SR) ∀Seoi ∈ S
eo % Eq. 4.2

10: miq ← Ī(Ceo,yeo) % estimating objective
11: SRj ← chooseElementWithMaxMI(mi, Scr)
12: return SR

Krause et al., 2008). Employing the paradigm of stochastic sampling, for estimating Ī(.), I randomly

sample a small subset of S (of size γ) along with their class labels (line 4). Also, in a single greedy

step, I consider only a small random subset of S (of size β) as candidates for selection into SR (line

5); for β � 1, with high probability, each element in S should be seen as a candidate at least once by

the algorithm. Algorithm 3 requires kernel computations of order, O(γM2 + γβM), with β, γ being the

sampling size constants; in practice,M � N . Note that θ and SR can be optimized in an iterative manner.

The proposed hashcode representation learning approach in this chapter is directly applicable for non-

stationary convolution kernels which I had introduced in the previous chapter. The parameters emerging

from a nonstationary extension of a convolution kernel can also be learned by maximizing the same objec-

tive, Ī(.), using the well known Metropolis-Hastings MCMC procedure (Hastings, 1970).

4.4 Experiments

I evaluate the model “KLSH-RF” (kernelized locality-sensitive hashing with random forest) for the biomed-

ical relation extraction task using four public datasets, AIMed, BioInfer, PubMed45, BioNLP, as briefed
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below.9 Figure 4.1 illustrates that the task is formulated as a binary classification of extraction candidates.

For evaluation, it is a standard practice to compute precision, recall, and F1 score on the positive class (i.e.,

identifying valid extractions).

4.4.1 Details on Datasets and Structural Features

AIMed & BioInfer

For AIMed and BioInfer datasets, cross-corpus evaluation has been performed in many previous works (Airola

et al., 2008; Tikk et al., 2010; Peng and Lu, 2017; Hsieh et al., 2017). Herein, the task is of identifying

pairs of interacting proteins (PPI) in a sentence while ignoring the interaction type. I follow the same

evaluation setup, using Stanford Dependency Graph parses of text sentences to obtain undirected shortest

paths as structural features for use with a path kernel (PK) to classify protein-protein pairs.

PubMed45 & BioNLP

I use PubMed45 and BioNLP datasets for an extensive evaluation of the proposed model, KLSH-RF

(Kim et al., 2009, 2011; Nédellec et al., 2013). Annotations in these datasets are richer in the sense that

a bio-molecular interaction can involve up to two participants, along with an optional catalyst, and an

interaction type from an unrestricted list. In PubMed45 (BioNLP) dataset, 36% (17%) of the “valid” in-

teractions are such that an interaction must involve two participants and a catalyst. For both datasets, I use

abstract meaning representation (AMR) to build subgraph or shortest path-based structural features (Ba-

narescu et al., 2013), for use with graph kernels (GK) or path kernels (PK) respectively, as done in the

recent works evaluating these datasets (Garg et al., 2016; Rao et al., 2017). For a fair comparison of the

classification models, I use the same bio-AMR parser (Pust et al., 2015a) as in the previous works. As in

Chapter 2 (Garg et al., 2016), the PubMed45 dataset is split into 11 subsets for evaluation, at paper level.

Keeping one of the subsets for testing, I use the others for training a binary classifier. This procedure is

repeated for all 11 subsets in order to obtain the final F1 scores (mean and standard deviation values are

9PubMed45 dataset is available here: github.com/sgarg87/big_mech_isi_gg/tree/master/pubmed45_
dataset; the other three datasets are here: corpora.informatik.hu-berlin.de
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reported from the numbers for 11 subsets). For BioNLP dataset (Kim et al., 2009, 2011; Nédellec et al.,

2013), I use training datasets from years 2009, 2011, 2013 for learning a model, and the development

dataset from year 2013 as the test set; the same evaluation setup is followed in (Rao et al., 2017).

In addition to the models previously evaluated on these datasets, I also compare KLSH-RF model to

KLSH-kNN (kNN classifier with KSLH approximation).

For PubMed45 and BioNLP datasets, for the lack of evaluations of previous works on these datasets,

I perform extensive empirical evaluation myself of competitive neural network models, LSTM, Bi-LSTM,

LSTM-CNN, CNN; from fine-grained tuning, for PubMed45 & PubMed45-ERN datasets, the tuned neural

architecture was a five-layer network, [8, 16, 32, 16, 8], having 8, 16, 32, 16, and 8 nodes, respectively, in

the 1st, 2nd, 3rd, 4th, 5th hidden layers; for BioNLP dataset, the tuned neural architecture was a two layer

network, [32, 32].

4.4.2 Parameter Settings

I use GK and PK, both using the same word vectors, with kernel parameter settings same as in (Garg et al.,

2016; Mooney and Bunescu, 2005).

Reference set size,M , doesn’t need tuning in the proposed model; there is a trade-off between compute

cost and accuracy; by default, I keep M = 100. For tuning any other parameters in the proposed model or

competitive models, including the choice of a kernel similarity function (PK or GK), I use 10% of training

data, sampled randomly, for validation purposes. From a preliminary tuning, I set parameters, H = 1000,

R = 250, η = 30, α = 2, and choose RMM as the KLSH technique from the three choices discussed in

Section 4.1.1; same parameter values are used across all the experiments unless mentioned otherwise.

When selecting reference set SR randomly, I perform 10 trials, and report mean statistics. (Variance

across these trials is small, empirically.) The same applies for KLSH-kNN. When optimizing SR with

Algorithm 3, I use β=1000, γ=300 (sampling parameters are easy to tune). I employ 4 cores on an i7

processor, with 16GB memory.
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Models (AIMed, BioInfer) (BioInfer, AIMed)
SVM1 (Airola08) 0.25 0.44
SVM2 (Airola08) 0.47 0.47

SVM (Miwa09) 0.53 0.50

SVM (Tikk10) 0.41 0.42
(0.67, 0.29) (0.27, 0.87)

CNN (Nguyen15-Rios18) 0.37 0.45

Bi-LSTM (Kavuluru17-Rios18) 0.30 0.47

CNN (Peng17) 0.48 0.50
(0.40, 0.61) (0.40, 0.66)

RNN (Hsieh17) 0.49 0.51

CNN-RevGrad (Ganin16-Rios18) 0.43 0.47

Bi-LSTM-RevGrad (Ganin16-Rios18) 0.40 0.46

Adv-CNN (Rios18) 0.54 0.49

Adv-Bi-LSTM (Rios18) 0.57 0.49

KLSH-kNN 0.51 0.51
(0.41, 0.68) (0.38, 0.80)

KLSH-RF 0.57 0.54
(0.46, 0.75) (0.37, 0.95)

Table 4.1: Cross-corpus evaluation results for (training, test) pairs of PPI datasets, AIMed and BioInfer
datasets. For each model, I report F1 score in the first row corresponding to it. In some of the previous
works, precision, recall numbers are not reported; wherever available, I show precision, recall numbers as
well, in brackets. Here, “Ganin16-Rios18” means that the model is originally proposed in (Ganin et al.,
2016), and evaluated for these datasets by (Rios et al., 2018).

4.4.3 Main Results for KLSH-RF

In the following I compare the simplest version of KLSH-RF model that is optimized by learning the

kernel parameters via maximization of the MI approximation, as described in Section 4.3 (γ = 1000).

In summary, KLSH-RF model outperforms state-of-the-art models consistently across the four datasets,

along with very significant speedups in training time w.r.t. traditional kernel classifiers.

4.4.3.1 Results for AIMed and BioInfer Datasets

In reference to Table 4.1, KLSH-RF gives an F1 score significantly higher than state-of-the-art kernel-

based models (6 pts gain in F1 score w.r.t. KLSH-kNN), and consistently outperforms the neural models.
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When using AIMed for training and BioInfer for testing, there is a tie between Adv-Bi-LSTM (Rios et al.,

2018) and KLSH-RF. However, KLSH-RF still outperforms their Adv-CNN model by 3 pts; further, the

performance of Adv-CNN and Adv-Bi-LSTM is not consistent, giving a low F1 score when training on the

BioInfer dataset for testing on AIMed. For the latter setting of AIMed as a test set, we obtain an F1 score

improvement by 3 pts w.r.t. the best competitive models, RNN & KLSH-kNN. Overall, the performance

of KLSH-RF is more consistent across the two evaluation settings, in comparison to any other competitive

model.

The models based on adversarial neural networks (Ganin et al., 2016; Rios et al., 2018), Adv-CNN,

Adv-Bi-LSTM, CNN-RevGrad, Bi-LSTM-RevGrad, are learned jointly on labeled training datasets and

unlabeled test sets, whereas our model is purely supervised. In contrast to our principled approach, there

are also system-level solutions using multiple parses jointly, along with multiple kernels, and knowledge

bases (Miwa et al., 2009; Chang et al., 2016). We refrain from comparing KLSH-RF w.r.t. such system

level solutions, as it would be an unfair comparison from a modeling perspective.

4.4.3.2 Results for PubMed45 and BioNLP Datasets

A summary of main results is presented in Table 4.2. “PubMed45-ERN” is another version of the PubMed45

dataset from (Garg et al., 2016), with ERN referring to entity recognition noise. Clearly, the proposed

model gives F1 scores significantly higher than SVM, LSTM, Bi-LSTM, LSTM-CNN, CNN, and KLSH-

kNN model. For PubMed45, PubMed45-ERN, and BioNLP, the F1 score for KLSH-RF is higher by 6

pts, 8 pts, and 3 pts respectively w.r.t. state of the art; KLSH-RF is the most consistent in its performance

across the datasets and significantly more scalable than SVM. Note that standard deviations of F1 scores

are high for the PubMed45 dataset (and PubMed45-ERN) because of the high variation in distribution

of text across the 11 test subsets (the F1 score improvements with the proposed model are statistically

significant, p-value=4.4e-8).
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Models PubMed45 PubMed45-ERN BioNLP
SVM (Garg16) 0.45±0.25 0.33±0.16 0.46

(0.58, 0.43) (0.33, 0.45) (0.35, 0.67)

LSTM (Rao17) N.A. N.A. 0.46
(0.51, 0.44)

LSTM 0.30±0.21 0.29±0.14 0.59
(0.38, 0.28) (0.42, 0.33) (0.89, 0.44)

Bi-LSTM 0.46±0.26 0.37±0.15 0.55
(0.59, 0.43) (0.45, 0.40) (0.92, 0.39)

LSTM-CNN 0.50±0.27 0.31±0.17 0.60
(0.55, 0.50) (0.35, 0.40) (0.77, 0.49)

CNN 0.51±0.28 0.33±0.18 0.60
(0.46, 0.46) (0.36, 0.32) (0.80, 0.48)

KLSH-kNN 0.46±0.21 0.23±0.13 0.60
(0.44, 0.53) (0.23, 0.29) (0.63, 0.57)

KLSH-RF 0.57±0.25 0.45±0.22 0.63
(0.63, 0.55) (0.51, 0.52) (0.78, 0.53)

Table 4.2: Evaluation results for PubMed45 and BioNLP datasets. For each model, I report F1 score (mean
± standard deviation) in the first row corresponding to it, and show mean-precision, mean-recall numbers
as well, in brackets. For BioNLP, I don’t show standard deviation since there is only one fixed test subset.

For the PubMed45 dataset, there are no previously published results with a neural model (LSTM). The

LSTM model of (Rao et al., 2017), proposed specifically for the BioNLP dataset, is not directly applicable

for the PubMed45 dataset because the list of interaction types in the latter is unrestricted.

4.4.4 Detailed Analysis of KLSH-RF

While we obtain superior results with the basic KLSH-RF model w.r.t. state-of-the-art methods using just

core optimization of the kernel parameters θ, in this subsection I analyze how we can further improve

the model. In Figure 4.4 I present our results from optimization of other aspects of the KLSH-RF model:

reference set optimization (RO) and non-stationary kernel parameters learning (NS). I report mean values

for precision, recall, F1 scores. For these experiments, I focus on PubMed45 and BioNLP datasets.
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PK NS-PK GK NS-GK
Kernel Functions

0.35

0.40

0.45

0.50

0.55

0.60

0.65

P
re

ci
si

on
/R

ec
al

l

(c) NSK Learning (PubMed45)

PK NS-PK GK NS-GK
Kernel Functions

0.45

0.50

0.55

0.60

0.65

0.70

0.75

P
re

ci
si

on
/R

ec
al

l

(d) NSK Learning (BioNLP)

103 104 105 106

Train Time in Seconds

SVM

kNN

LSTM

KLSH-kNN

KLSH-RF

KLSH-RF-NS

KLSH-RF-RO

C
la

ss
ifi

er
s

(e) Training Time (BioNLP)

Figure 4.4: Detailed Evaluation of KLSH-RF model, using PubMed45 and BioNLP datasets. Here, orange
and blue bars are for precision and recall numbers respectively. “NSK” refers to nonstationary kernel learn-
ing; PK & GK denote Path Kernels and Graph Kernels respectively; NS-PK and NS-GK are extensions of
PK and GK respectively, with addition of nonstationarity based binary parameters; “M30” represents SR

of size 30 selected randomly, and the suffix “RO” in “M30-RO” refers to optimization of SR (Reference
optimization) in contrast to random selection of SR.
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4.4.4.1 Reference Set Optimization

In Figure 4.4(a) and 4.4(b), I analyze the effect of the reference set optimization (RO), in comparison to

random selection, and find that the optimization leads to significant increase in recall (7-13 pts) for PubMed

dataset along with a marginal increase/decrease in precision (2-3 pts); I used PK for these experiments.

For the BioNLP dataset, the improvements are not as significant. Further, as expected, the improvement is

more prominent for smaller size of reference set (M ). To optimize reference set SR for M = 100, it takes

approximately 2 to 3 hours (with β = 1000, γ = 300 in Algorithm 3).

4.4.4.2 Nonstationary Kernel Learning (NSK)

In Figure 4.4(c) and 4.4(d), I compare performance of non-stationary kernels, w.r.t. traditional stationary

kernels (M=100). As proposed in Chapter 3, the idea is to extend a convolution kernel (PK or GK) with

non-stationarity-based binary parameters (NS-PK or NS-GK), optimized using an MCMC procedure via

maximizing the proposed MI approximation based objective (γ = 300). For the PubMed45 dataset with

PK, the advantage of NSK learning is more prominent, leading to high increase in recall (7 pts), and a very

small drop in precision (1 pt). Compute time for learning the non-stationarity parameters in KLSH-RF

model is less than an hour.

4.4.4.3 Compute Time

Compute times to train all the models are reported in Figure 4.4(e) for the BioNLP dataset; similar time

scales apply for other datasets. It is observed that the basic KLSH-RF model has a very low training cost,

w.r.t. models like LSTM, KLSH-kNN, etc. (similar analysis applies for inference cost). The extensions

of KLSH-RF, KLSH-RF-RO and KLSH-RF-NS, are more expensive yet cheaper to train than LSTM and

SVM.
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4.5 Related Work

Besides some related work mentioned in the previous sections, this section focuses on relevant state-of-

the-art literature in more details.

Other Hashing Techniques

In addition to hashing techniques considered in this thesis, there are other locality-sensitive hashing

techniques (Grauman and Fergus, 2013; Zhao et al., 2014; Wang et al., 2017) which are either not kernel

based, or they are defined for specific kernels that are not applicable for hashing of NLP structures (Ragin-

sky and Lazebnik, 2009). In deep learning, hashcodes are used for similarity search but classification of

objects (Liu et al., 2016).

Hashcodes for Feature Compression

Binary hashing (not KLSH) has been used as an approximate feature compression technique in order to

reduce memory and computing costs (Li et al., 2011; Mu et al., 2014). Unlike prior approaches, this work

proposes to use hashing as a representation learning (feature extraction) technique.

Using Hashcodes in NLP

In NLP, hashcodes were used only for similarity or nearest neighbor search for words/tokens in various

NLP tasks (Goyal et al., 2012; Li et al., 2014; Shi and Knight, 2017); our work is the first to explore

kernel-hashing of various NLP structures, rather than just tokens.

Kernel Approximations

Besides the proposed model, there are other kernel-based scalable techniques in the literature, which

rely on approximation of a kernel matrix or a kernel function (Williams and Seeger, 2001; Moschitti,

2006; Rahimi and Recht, 2008; Pighin and Moschitti, 2009; Zanzotto and Dell’Arciprete, 2012; Severyn

and Moschitti, 2013; Felix et al., 2016). However, those approaches are only used as computationally ef-

ficient approximations of the traditional, computationally-expensive kernel-based classifiers; unlike those
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approaches, our method is not only computationally more efficient but also yields considerable accuracy

improvements.

4.6 Chapter Summary

In this chapter I proposed to use a well-known technique, kernelized locality-sensitive hashing (KLSH),

in order to derive feature vectors from natural language structures. More specifically, I proposed to use

random subspaces of KLSH codes for building a random forest of decision trees. I find this methodology

particularly suitable for modeling natural language structures in supervised settings where there are signif-

icant mismatches between the training and the test conditions. Moreover I optimize a KLSH model in the

context of classification performed using a random forest, by maximizing an approximation of the mutual

information between the KLSH codes (feature vectors) and the class labels. I apply the proposed approach

to the difficult task of extracting information about bio-molecular interactions from the semantic or syn-

tactic parsing of scientific papers. Experiments on a wide range of datasets demonstrate the considerable

advantages of the novel method.

78



Chapter 5

Nearly Unsupervised Hashcode Representations

In the previous chapter, kernelized locality sensitive hashcodes based representation learning approach has

been proposed that has shown to be the most successful in terms of accuracy and computational efficiency

for the task (Garg et al., 2019). In that approach, kernelized (binary) hashcode of an example acts as its

representation vector, computed as a function of kernel similarities of the example w.r.t. (only) a constant

sized reference set of examples, and then the representations vectors are fed into a Random Forest of

decision trees as the final classification model.

The choice of the reference set and the parameters of a kernel function are optimized in a purely super-

vised manner, shared between all the (kernel based) hash functions, whereas an individual hash function

is constructed in a randomized fashion, serving for randomized semantic categorization of examples (bi-

nary semantic feature). It is suggested to obtain thousands of (randomized) semantic features extracted

from natural language examples into binary hashcodes, and then making classification decision as per the

features using hundreds of decision trees, which is the core of the robust classification approach.

Although hashcode representation learning is a very promising direction of research, there is a signif-

icant scope for improving upon the supervised approach presented in the previous chapter. Even if we

extract thousands of semantic features using the hashing approach, it is difficult to ensure that the features

extracted from a training set of examples would generalize to a test set. While the inherent randomness in

constructing hash functions from a training set of examples can help towards generalization in the case of
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absence of a test set, there should be better alternatives if we do have the knowledge of a test set of exam-

ples. What if we construct hash functions in an intelligent manner via exploiting the additional knowledge

of unlabeled examples in a test set, performing fine-grained optimization of each hash function rather than

relying upon randomness, so as to extract semantic features which generalize?

Along these lines, in this chapter, I propose a new framework for learning hashcode representations

accomplishing two important (inter-related) extensions w.r.t. the supervised approach presented in the

previous chapter:

(a) I propose to use a semi-supervised learning setting, that is nearly unsupervised as it is suggested

to use only the knowledge of which set an example comes from, a training set or a test set, along with the

example itself, whereas the actual class labels of examples (from a training set) are input only to the final

supervised-classifier, such as an RF, which takes input of the learned hashcodes as representation (feature)

vectors of examples along with their class labels;

(b) I introduce multiple concepts for fine-grained optimization of hash functions, employed in a novel

information-theoretic algorithm that constructs hash functions greedily one by one. In supervised settings,

fine-grained (greedy) optimization of hash functions could lead to overfitting whereas, in the proposed

nearly-unsupervised framework, it allows flexibility for explicitly maximizing the generalization capa-

bilities of hash functions, as I explain in the following, introducing two key ideas for the fine-grained

optimization.

Key Ideas for Fine-Grained Optimization of Hash Functions

To understand our first key idea for fine-grained optimization of a hash function, see Figure 5.1. In Fig-

ure 5.1(a), I demonstrate how a single hash function is constructed from a small set of examples by splitting

the set into two subsets, showing many possible splits as dashed lines corresponding to different choices

for a hash function. While in the previous works (Garg et al., 2019, 2018; Joly and Buisson, 2011), a split

is chosen randomly from all the choices, I propose to select an optimal split such that it helps in general-

ization across training and test sets, i.e., a hash function should assign same value, zero as well as one, to
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(a) Hash function choices (b) A generalizing hash function

(c) Generalizing hash functions (d) Non-generalizing hash functions

Figure 5.1: In this figure, I illustrate how to construct hash functions which generalize across a training
and a test set. Blue and red colors denote a training set and a test set respectively. A hash function is
constructed by splitting a very small subset of examples into two parts. In Figure 5.1(a), given the set
of four examples selected randomly, there are many choices possible for splitting the set, corresponding
to difference choices of hash functions which are denoted with dashed lines. The optimal choice of hash
function is shown in Figure 5.1(b) since it generalizes well, assigning same value to many examples from
both training & test sets. In Figure 5.1(c) and Figure 5.1(d), I analyze generalization of multiple hash
functions jointly. In both the figures, hash functions are represented as solid lines, satisfying the criterion
of locality sensitivity; the difference, however, is that the hash functions in Figure 5.1(d), do not generalize
well from a training set (blue color) to a test set (red color); the proposed criterion to analyze generalization
of multiple hash functions is to see if there are training as well as test examples within a cluster (shaded
region); the inter-spaces between the vertical (or horizontal) lines can be thought of as clusters; as we can
see, a cluster in Figure 5.1(c) contains examples from both training & test sets, which is not true for many
clusters in Figure 5.1(d).
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many examples from both training & test sets as shown in Figure 5.1(b). The concept of evaluating gen-

eralization of hashcodes can be further extended to multiple hash functions, as illustrated in Figure 5.1(c)

and Figure 5.1(d). In Figure 5.1(d), I show six hash functions which produce valid locality sensitive hash-

codes but not generalizing across training & test sets, whereas the ones in Figure 5.1(c) do generalize.

The criterion I propose to gauze the generalization of hashcodes is to see if there are training as well test

examples within a cluster of examples (for instance, the shaded regions in the two figures), with clusters

being defined from a subset of the hash functions. Thus, for constructing a hash function from a given set

of examples, one can optimize upon the choice of a split of the set such that the function, along with the

other hash functions, generalize across training & test sets as per the criteria introduced in the above.

My second key idea for fine-grained optimization of a hash function, referring back to Figure 5.1(a),

is to select the set of examples intelligently that is required for construct a hash function. In the previous

works, a hash function is constructed from a set of examples which is sub-sampled randomly from a

superset of examples (say a training set). This approach of global sampling may lead to redundancy

between hash functions. So I propose that, for constructing some of the latter hash functions in a greedy

algorithm, the examples to construct a hash function should be sub-sampled locally from within a cluster

so as to capture fine-grained differences between examples, helping reduce redundancies between the

functions. See Figure 5.2 for a contrast between hash functions constructed via global sampling vs local

sampling; in the figure, we see that global sampling is suitable to capture higher-order differences between

examples whereas local sampling is to appreciate fine-grained differences between examples. Moreover,

from the perspective of generalization, I suggest to sample from a cluster that contains examples from both

training & test sets as shown in Figure 5.2(c).

Summary of Contributions

In summary, I make the following contributions in this chapter.
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(a) Global sampling (b) Local sampling from a cluster

(c) Local sampling from a high entropy cluster

Figure 5.2: In all the three figures, dark-gray lines denote hash functions optimized previously, and inter-
sections of the lines give us 2-D cells denoting hashcodes as well as clusters; black dots represent a subset
of examples which are used to construct a hash function, and some of the choices to split the subset are
shown as green dashed lines. The procedure of sampling the subset varies across the three figures. In
Figure 5.2(a), since the four examples from global sampling have already unique hashcodes (2-D cells),
the newly constructed hash function (one of the green dashed-lines) adds little information to their rep-
resentations. In Figure 5.2(b), on the other hand, a hash function constructed from examples, sampled
locally from within a cluster, puts some of the examples in the subset into two different cells (hashcodes),
so adding more fine-grained information to their representations, hence more advantageous from repre-
sentation learning perspective. In Figure 5.2(c), training and test examples are denoted with blue and red
colors respectively, and the examples to construct a new hash function are sampled locally from within a
high entropy cluster, i.e. the one containing examples from both training & test sets.
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(i) I extend the recently proposed approach of learning supervised hashcode representations, with a

novel nearly-unsupervised learning framework which allows fine-grained optimization of each hash func-

tion, one by one in a greedy manner, relying upon the concepts of, (a) intelligently selecting a small set

of examples to construct a hash function, and also, (b) informatively splitting the set, such that hashcode

representations generalize across training & test sets.

(ii) For the task of biomedical relation extraction, I evaluate the proposed approach on four public

datasets, and obtain significant gain in F1 scores w.r.t. state-of-the-art models including kernel-based

approaches as well the ones based on (semi-supervised) adversarial learning of neural networks.

(iii) I show how to employ the nearly unsupervised framework for learning hashcode representations,

using not only the traditional kernel similarity functions, but neural networks as well.

5.1 Problem Formulation & Background

In this section, I brief upon the approach of kernelized hashcode representations from the previous chap-

ter (Garg et al., 2019) which has shown state-of-the-art results for bio-medical relation extraction task

though the approach, in principle, is applicable for any NLP task involving classification of natural lan-

guage structures.

We have natural language structures, S = {Si}N1 , such as parse trees, shortest paths, text sentences,

etc, with corresponding class labels, y = {yi}N1 . For the examples coming from a training set and a test set,

we use notations,ST ,yT , andS∗,y∗, respectively. In addition, we define indicator variable, x = {xi}Ni=1,

for S, with xi ∈ {0, 1} denoting if an example Si is coming from a test set (x = 0, unlabeled example) or

a training set (x = 1, labeled example). Our goal is infer class labels of the examples, y∗, from a test set,

S∗.
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5.1.1 Hashcode Representations

As per the hashcode representation approach, S is mapped to a set of locality sensitive hashcodes, C =

{ci}N1 , using a set of binary hash functions, i.e. ci = h(Si) = {h1(Si), · · · , hH(Si)}. These hashcodes

serve as feature vector representations so as to be used with any classification model, for instance, a random

forest of decision trees. In the following, I describe the concept of locality sensitivity, discuss a general

procedure to learn a set of locality sensitive hash functions.

Locality Sensitivity of Hash Functions

With locality sensitive hash functions, the probability of two examples to be assigned same hashcodes

is proportional to their similarity (defined as per any valid similarity/distance function); this also implies

that examples that are very similar to each other are assigned hashcodes with minimal Hamming distance

to each other, and vica versa (Wang et al., 2014, 2017; Indyk and Motwani, 1998). Locality sensitivity

of hash functions serve as the basis for using hashcodes as representations as well as for nearest neighbor

search (Garg et al., 2019, 2018; Kulis and Grauman, 2012; Joly and Buisson, 2011). In my approach

proposed in Section 5.2, I have an additional use of locality sensitive hash functions for clustering of

examples to facilitate semi-supervised representation learning.

Basics of Constructing Hash Functions

A locality sensitive hash function, hl(.;θ), is constructed such that it splits a set of examples, SRl , into

two subsets as shown in Figure 5.1(a), while choosing the set as a small random subset of S, i.e. SRl ⊂ S

s.t. |SRl | = α � N . In this manner, we can construct a large number of hash functions, {hl(.;θ)}Hl=1,

from a reference set, SR = {SR1 ∪ · · · ∪ S
R
H}, |S

R| = M ≤ αH � N . Although a hash function is

constructed from a handful of examples, the parameters, θ, and optionally, the selection of SR can be

optimized using the whole training dataset, {ST ,yT }.
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Supervised Learning of Kernelized Hash Functions

While, mathematically, a locality sensitive hash function can be of any form, previously introduced lo-

cality sensitive hash functions, which are applicable for hashing of natural language structures, are based

on kernel methods (Garg et al., 2019, 2018; Joly and Buisson, 2011), relying upon a convolution ker-

nel similarity function K(Si, Sj ;θ) defined for any pair of structures Si and Sj with kernel-parameter

θ (Haussler, 1999). To construct hl(.), a kernel-trick based model, such as kNN, SVM, is fit to {SRl , zl},

with a randomly sampled binary vector, zl ∈ {0, 1}α, that defines the split of SRl . For computing hash-

code ci for an example Si, it requires only M number of convolution-kernel similarities of Si w.r.t. the

examples in SR, which makes this approach highly scalable in compute cost terms.

θ∗,SR
∗ ← arg max

θ, SR:SR⊂ST

I(c : y); c = h(S;θ,SR) (5.1)

In the previous chapter, it is proposed to optimize all the hash functions jointly by learning only the

parameters which are shared amongst all the functions, i.e. learning kernel parameters, θ and the choice

of reference set, SR ⊂ ST . This optimization is performed in a supervised manner via maximization of

the mutual information between hashcodes of examples and their class labels (5.1), using {ST ,yT } for

training.

Limitations of the Supervised Hashcode Learning Approach

My key insight in regards to limitation of the approach for supervised learning of hashcode representa-

tions, also mentioned in the previous chapter (Garg et al., 2019), is that, to avoid overfitting, learning is

intentionally restricted only to the optimization of shared parameters whereas each hash function is con-

structed in a randomized manner, i.e. random sub-sampling of a subset, SRl , and a random split of the

subset. On the other hand, in a semi-supervised hashcode learning settings like considered in this chap-

ter, it is possible to extend the optimization from global parameters to fine-grained optimization of hash
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functions while avoiding overfitting due to the knowledge of examples from a test set (or a large set of

unlabeled examples if considering inductive settings), as I demonstrate in Section 5.2. Further, although it

is difficult to characterize mathematically, the inherent randomness in sampling of a subset is constitutive

towards preserving locality sensitivity of hash functions. In the light of this important algorithmic nature

of the core approach, in the proposed framework here, sampling of a subset is pseudo-random, i.e. random

sampling of examples locally from within one of the clusters of the examples in the superset.

Semi-Supervised Settings for Learning Hashcodes

I propose to learn hash functions, h(.), using S = {ST ,S∗}, x, and optionally, yT . Herein, S∗ is

a test set of examples for which we want to infer class labels y∗, corresponding to transductive (semi-

supervised) settings. One can also consider inductive (semi-supervised) settings where S∗ is a very large

set of unlabeled examples. Within the semi-supervised setting, inductive or transductive, if we are not using

yT for learning h(.), but only, {S,x}, I refer to it as nearly unsupervised settings. In the next section, I

introduce the framework for learning hash functions in above specified learning settings, to optimize global

parameters as well optimizing aspects local to a hash function. After learning hash functions, one can

compute hashcodes C for S, and train a random forest classifier, or any other classifier, using {CT ,yT }

to infer class labels for input of hashcodes, C∗, computed for S∗. One can also train a semi-supervised

classifier, using {C,x,yT }.

5.2 Semi-Supervised Hashcode Representations

In this section, I propose a novel algorithm for a fine-grained optimization of the hash functions within the

semi-supervised (nearly unsupervised) learning framework, with the objective of learning representations

generalizing across training & test sets.
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5.2.1 Basic Concepts for Fine-Grained Optimization

In the prior works on kernel-similarity based locality sensitive hashing, the first step for constructing a

hash function is to randomly sample a small subset of examples, from a superset of examples, S, and in

the second step, the subset is split into two parts using a kernel-trick based model (Garg et al., 2019, 2018;

Joly and Buisson, 2011), serving as the hash function, as described in Section 5.1.

In the following, I introduce basic concepts for improving upon these two key aspects of constructing a

hash function, while later, in Section 5.2.2, these concepts are incorporated in a unified manner in a novel

information-theoretic algorithm that greedily optimizes hash functions one by one.

5.2.1.1 Informative Split of a Set of Examples

In Figure 5.1(a), construction of a hash function is pictorially illustrated, showing multiple possible splits,

as dotted lines, of a small set of four examples (black dots). (Note that a hash function is shown to be a

linear hyperplane only for simplistic explanations of the basic concepts.) While in the previous works,

one of the many choices for splitting the set is chosen randomly, I propose to optimize upon this choice.

Intuitively, one should choose a split of the set, corresponding to a hash function, such that it gives a

balanced split for the whole set of examples, and it should also generalize across training & test sets. In

reference to the figure, one simple way to analyze the generalization of a split (so the hash function) is

to see if there are training as well test examples on either side of the dotted line. As per this concept, an

optimal split of the set of four examples is shown in Figure 5.1(b).

Referring back to Section 5.1, clearly, this is a combinatorial optimization problem, where we need

to choose an optimal choice of zl ∈ {0, 1}α for set, SRl , to construct hl(.). For a small value of α, one

can either go through all the possible combinations in a brute force manner, or use Markov Chain Monte

Carlo sampling. It is interesting to note that, even though a hash function is constructed from a very small

set of examples (of size α 6� 1), the generalization criterion, formulated in the info-theoretic objective

introduced in Section 5.2.2, is computed using all the examples available for the optimization, S.
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Figure 5.3: Dark-gray lines denote hash functions optimized previously, and gray color represents exam-
ples used for the optimization. The intersections of the lines give us 2-D cells, corresponding to hashcodes
as well as clusters. For the set of four examples sampled within a cluster, there are many choices to split
it (corresponding to hash functions choices), shown with dashed lines. I propose to choose the one which
also splits the sets of examples in other (neighboring) clusters in a balanced manner, i.e. having examples
in a cluster on either side of the dashed line and cutting through as many clusters as possible. As per this
criterion, the thick-green dashed lines are superior choices w.r.t. the thin-green ones.

5.2.1.2 Sampling Examples Locally from a Cluster

Another aspect of constructing a hash function, having a scope for improvement, is sampling of a small

subset of examples, SRl ⊂ S, that is used to construct a hash function. In the prior works, the selection of

such a subset is purely random, i.e. random selection of examples globally from S.

In Figure 5.2, I illustrate that, after constructing a small number of hash functions with purely random

sub-sampling of the subsets, it is wiser to (randomly) select examples (SRl ) locally from one of the clusters

of the examples in S, rather than sampling globally from S; herein, I propose that clustering of all the

examples in S can be obtained using the hash functions itself, due to their locality sensitive property.

While using a large number of locality sensitive hash functions give us fine-grained representations of

examples, a small subset of the hash functions, of size ζ, defines a valid clustering of the examples, since

examples which are similar to each other should have same hashcodes serving as cluster labels.
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From this perspective, we can construct first few hash functions from global sampling of examples,

what I refer as global hash functions. These global hash functions should serve to provide hashcode rep-

resentations as well as clusters of examples. Then, using local sampling, we can also construct local hash

functions to capture more finer details of examples, which may be missed out by global hash functions. As

per this concept, we can learn hierarchical (multi-scale) hashcode representations of examples, capturing

differences between examples from coarser (global hash functions) to finer scales (local hash functions).

Further, I suggest two criteria to choose a cluster for local sampling: (i) a cluster should have a reason-

ably high number of examples belonging to it; (ii) a cluster should have a balanced ratio of the count of

training & test examples so that a new cluster emerging from the split has a high probability of containing

training as well test examples, which is desirable from the perspective of having generalized hashcode

representations; see Figure 5.2(c).

5.2.1.3 Splitting Neighboring Clusters (Non-redundant Local Hash Functions)

We can also understand the idea of a local hash function as the one which splits a cluster into two parts,

indirectly via splitting a set of examples randomly selected from within the cluster. So we can keep on

splitting clusters one by one by constructing more and more local hash functions. Though, considering a

large number of clusters possible, we would like a hash function to split the neighboring clusters as well,

characterizing its non-redundancy w.r.t. the other hash functions; see Figure 5.3 for a pictorial explanation

of this concept.

Next I mathematically formalize all the concepts introduced above for fine-grained optimization of hash

functions into an information-theoretic objective function.

5.2.2 Information-Theoretic Learning Algorithm

I consider optimizing hash functions greedily, one by one. Referring back to Section 5.1, I define binary

random variable x denoting the presence or absence of a class label for an example, S; in other words, it
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Algorithm 4 Nearly Unsupervised Hashcode Representation Learning

Require: {S,x}, H,α, ζ.
1: h(.)← {}, C ← {}, f ← {}
% Greedy step for optimizing hash function, hl(.)

2: while |h(.)| < H do
3: αl ← sampleSubsetSize(α) % Sample a size for the subset of examples,

SRl , to construct a hash function
4: if |h(.)| < ζ then
5: SRl ← randomSampleGlobally(S, αl) % Randomly sample examples, globally

from S, for constructing a global hash function.
6: else
7: SRl ← randomSampleLocally(S,C,x, αl, ζ) % Sample examples randomly from,

a high entropy cluster, for constructing a local hash function.

8: hl(.), fl←optimizeSplit
(
SRl ,S,C,x

)
% Optimize split of SRl .

9: c← computeHash(S, hl(.))
10: C ← C ∪ c, h(.)← h(.) ∪ hl(.), f ← f ∪ fl.
11: h(.),C,f ← deleteLowInfoFunc(h(.),C,f) % delete hash functions from the

set with lower objective values
12: Return h(.),C.

denotes whether an example comes from a training set or a test set. In a greedy step of optimizing a hash

function, random variable, c, represents the hashcode of an example, S, as per the previously optimized

hash functions, hl−1(.) = {h1(.), · · · , hl−1(.)}; c = hl−1(S). Along same lines, c denotes the binary

random variable corresponding from the present hash function under optimization, hl(.); c = hl(S). I

propose to maximize an information-theoretic objective function as below.

argmax
hl()
H(x, c)− I(c : c) +H(x|c); (5.2)

c = hl−1(S), c = hl(S)

Herein the optimization of a hash function, h(.), involves: (i) intelligent selection ofSRl , (ii) an informative

split of SRl , i.e. optimizing zl for SRl , and (iii) learning of the parameters θ of a (kernel or neural) model,

which is fit to {SRl , zl}, acting as the hash function.

In the objective function above, maximizing the first term, H(x, c), i.e. joint entropy on x and c,

corresponds to the concept of informative split described above in Section 5.2.1, i.e. a hash function

91



assigning value 0 to labeled (training) as well as unlabeled examples (test), and same applies for value 1;

see Figure 5.1. This term is cheap to compute since x and c are both 1-dimensional binary variables.

Referring to the second term in the objective function, mutual information is minimized between the

hash function being optimized and the previously optimized hash functions, i.e. I(c : c), so as to en-

sure minimal redundancies between hash functions. This is related to the concept of constructing a hash

function, from examples sampled within a cluster, such that it splits many of the neighboring clusters,

as mentioned above in Section 5.2.1; see Figure 5.3. This mutual information function can be computed

using the approximation in the previous work by (Garg et al., 2019).

The last quantity in the objective isH(x|c), conditional entropy on x given c. Since both quantities, x

and c are fixed in the optimization, this term is is not directly effected from the greedy optimization of hash

function, hl(.), as such. Yet, this term has a high significance from the perspective of learning generalized

hashcode representations, since maximizingH(x|c) encourages clusters, defined from the hash functions,

to contain labeled (training) as well as unlabeled (test) examples. So I propose to maximize this term

indirectly via choosing a cluster informatively, from which to randomly select examples for constructing

the hash function, such that it contains a balanced ratio of the count of training & test examples, i.e. a

cluster with high entropy on x, which I refer as a high entropy cluster. As explained in Section 5.2.1, the

hash function constructed from examples within a cluster splits the clusters itself, and the new clusters

emerging from a split of a high entropy cluster should have higher chances to be high entropy clusters

themselves, in comparison to the ones emerging from a split of a lower entropy cluster. See Figure 5.2(c) to

understand this concept pictorially. Computations in the procedure of characterizing entropies of clusters

are cheap, requiring to compute marginal entropy on x for each cluster, and an explicit computation of

H(x|c) is not required.

It is interesting to observe that the above info-theoretic objective uses only the knowledge of whether an

example is labeled or unlabeled (random variable x), while ignoring the actual class label of an example. In

this sense, the objective function is nearly unsupervised. Here, the emphasis is on fine-grained optimization

of each hash function such that hashcode representations generalize across training & test sets. Optionally
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one may extend the objective function to include the term,−H(y|c, c), with y denoting the random variable

for a class label.

The above described framework is summarized in Algorithm 4.

Kernel-trick Model or Neural Network as a Hash Function

For optimizing a kernelized hash function given SRl , hl(.), when finding an optimal choice of zl ∈

{0, 1}α for SRl , we can also optimize kernel parameters, θ, of a kernel-trick based model, which is fit on

SRl along with a given choice of zl, corresponding to one of the choices for hl(.). Thus we can learn

kernel parameters local to a hash function unlike the previous works. Further, we can fit any (regularized)

neural model on {SRl , zl}, acting as a neural locality sensitive hash function. For a random choice of zl

for SRl , one can expect that the neural hash function may overfit to {SRl , zl}, so acting as a poor hash

function. However it is reasonable to assume that some of the many possible choices for a split of SRl

should be natural to obtain even with a highly parameterized model, as I observe empirically.

Deleting (Weak) Hash Functions

In the algorithm, I also propose to delete some of the hash functions from the set of optimized ones, the

ones which have low objective function values w.r.t. the rest. The reason for including this step is to have

robustness against an arbitrarily bad choice of randomly selected subset, SRl , from within a chosen cluster.

This can be especially useful for neural hashing, because of the possible sensitivity of a neural network to

input examples.

Mixture of Values for a Tuning Parameter

Another advantage of the idea of deleting hash functions is that the size of SRl , i.e. parameter α, doesn’t

have to be fixed in the algorithm. Deletion of hash functions makes the algorithm robust against a bad

choice for the parameter, α, thus allowing us to have a mixture of the values, while avoiding fine-grained

tuning of the parameter. Same concept can applied to any other tuning parameter that is local to a hash

function.
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Parallel Computing

There are many aspects in the algorithm which can be parallelized, such as optimizing a split of a subset

to construct a hash function, computing kernel matrices, or neural network learning (on a GPU), or one

can even construct multiple hash functions in parallel in each greedy step.

In contrast to the supervised approach proposed in the previous chapter, here, I have proposed a fine-

grained greedy optimization of hash functions, while having robustness w.r.t. overfitting, relying upon the

nearly unsupervised learning framework which assumes the knowledge of a test set or any other set of

unlabeled examples. Next, I demonstrate the applicability of the approach for the highly challenging task

of biomedical relation extraction.

5.3 Experiments

For my proposed approach of nearly unsupervised hashcode representations, I use a random forest (RF) as

the final supervised-classifier, following the work from the previous chapter (Garg et al., 2019) in which

supervised hashcode representations are fed as input feature vectors to an RF (KLSH-RF). I refer to the

new kernel based model, introduced in this chapter, as KLSH-NU-RF, and the neural one as NLSH-NU-RF.

For learning nearly-unsupervised hashcode representations (using Algorithm 4) in the proposed mod-

els, KLSH-NU-RF & NLSH-NU-RF, I use training as well as test examples without any class labels, but

not any other source of unlabeled examples unless specified otherwise.

5.3.1 Dataset Details

For evaluation, I considered the task of biomedical relation extraction using four public datasets, AIMed,

BioInfer, PubMed45, BioNLP, as done for KLSH-RF in the previous chapter. While PubMed45, BioNLP

datasets represent more challenging aspects of the task, AIMed, BioInfer datasets have relevance because
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Models (AIMed, BioInfer) (BioInfer, AIMed)
SVM1 (Airola08) 0.25 0.44

SVM2 (Airola08) 0.47 0.47

SVM (Miwa09) 0.53 0.50

SVM (Tikk et al., 2010) 0.41 0.42
(0.67, 0.29) (0.27, 0.87)

CNN (Nguyen15) 0.37 0.45

Bi-LSTM (Kavuluru et al., 2017) 0.30 0.47

CNN (Peng and Lu, 2017) 0.48 0.50
(0.40, 0.61) (0.40, 0.66)

RNN (Hsieh et al., 2017) 0.49 0.51

CNN-RevGrad (Ganin et al., 2016) 0.43 0.47

Bi-LSTM-RevGrad (Ganin et al., 2016) 0.40 0.46

Adv-CNN (Rios et al., 2018) 0.54 0.49

Adv-Bi-LSTM (Rios et al., 2018) 0.57 0.49

KLSH-kNN (Garg et al., 2019) 0.51 0.51
(0.41, 0.68) (0.38, 0.80)

KLSH-RF (Garg et al., 2019) 0.57 0.54
(0.46, 0.75) (0.37, 0.95)

SSL-VAE 0.50 0.46
(0.38, 0.72) (0.39, 0.57)

KLSH-NU-RF 0.57 0.57
(0.44, 0.81) (0.44, 0.81)

NLSH-NU-RF 0.56 0.55
(0.43, 0.80) (0.40, 0.84)

Table 5.1: I show results from cross-corpus evaluation for (train, test) pairs of PPI datasets, AIMed and
BioInfer. For each model, I report F1 score, and if available, precision, recall scores are also shown
in brackets. For the adversarial neural models by (Ganin et al., 2016), evaluation on the datasets was
provided by (Rios et al., 2018).
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cross corpus evaluations been performed on these two datasets, using kernel as well as neural models

including the ones doing (semi-supervised) adversarial training of neural networks using the knowledge

of examples in a test set.

For AIMed and BioInfer, cross-corpus evaluations have been performed in many previous works (Airola

et al., 2008; Tikk et al., 2010; Peng and Lu, 2017; Hsieh et al., 2017; Rios et al., 2018; Garg et al., 2019).

These datasets have annotations on pairs of interacting proteins (PPI) in a sentence while ignoring the

interaction type. Following these previous works, for a pair of proteins mentioned in a text sentence from

a training or a test set, I obtain an undirected shortest path between the pair in a Stanford dependency parse

of the sentence, for which a hashcode representation (feature vector) is obtained.

PubMed45 and BioNLP datasets have been used for extensive evaluations in recent works (Garg et al.,

2019, 2018; Rao et al., 2017; Garg et al., 2016). These two datasets consider a relatively more difficult task

of inferring interaction between two or more bio-entities mentioned in a sentence, along with the inference

of their interaction-roles, and the type of interaction from an unrestricted list. As in the previous works,

I use abstract meaning representation (AMR) to obtain shortest path-based structural features (Banarescu

et al., 2013; Pust et al., 2015a), which are mapped to hashcodes in my model. PubMed45 dataset has 11

subsets for evaluation, with evaluation performed for each of the subsets as a test set leaving the rest for

training. For BioNLP dataset (Kim et al., 2009, 2011; Nédellec et al., 2013), the training set contain an-

notations from years 2009, 2011, 2013, and the test set contains development set from year 2013. Overall,

for a fair comparison of the proposed models w.r.t. the ones introduced in the previous chapter (Garg et al.,

2019), I keep same experimental setup as followed in there, for all the four datasets, so as to avoid any

bias due to engineering aspects; evaluation metrics for the relation extraction task are, f1 score, precision,

recall.

5.3.2 Parameter settings

I use path kernels with word vectors & kernel parameter settings as in the previous works (Garg et al., 2019,

2016). From a preliminary tuning, I set the number of hash functions,H = 100, and the number of decision
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Models PubMed45 BioNLP
SVM (Garg et al., 2016) 0.45±0.25 0.46

(0.58, 0.43) (0.35, 0.67)

LSTM (Rao et al., 2017) N.A. 0.46
(0.51, 0.44)

LSTM (Garg et al., 2019) 0.30±0.21 0.59
(0.38, 0.28) (0.89, 0.44)

Bi-LSTM (Garg et al., 2019) 0.46±0.26 0.55
(0.59, 0.43) (0.92, 0.39)

LSTM-CNN (Garg et al., 2019) 0.50±0.27 0.60
(0.55, 0.50) (0.77, 0.49)

CNN (Garg et al., 2019) 0.51±0.28 0.60
(0.46, 0.46) (0.80, 0.48)

KLSH-kNN (Garg et al., 2019) 0.46±0.21 0.60
(0.44, 0.53) (0.63, 0.57)

KLSH-RF (Garg et al., 2019) 0.57±0.25 0.63
(0.63, 0.55) (0.78, 0.53)

SSL-VAE 0.40± 0.16 0.48
(0.33, 0.69) (0.43, 0.56)

KLSH-NU-RF 0.61±0.23 0.67
(0.61, 0.62) (0.73, 0.61)

NLSH-NU-RF 0.59±0.23 0.63
(0.57, 0.64) (0.71, 0.56)

Table 5.2: Evaluation results for PubMed45 and BioNLP datasets. I report F1 score (mean ± standard de-
viation), and mean-precision & mean-recall numbers in brackets. For BioNLP, standard deviation numbers
are not provided as there is one fixed test subset.

trees in a Random Forest classifier, R = 100; these parameters are not sensitive, requiring minimal tuning.

For any other parameters which may require fine-grained tuning, I use 10% of training examples, selected

randomly, for validation. Within kernel locality sensitive hashing, I choose between Random Maximum

Margin (RMM) and Random k-Nearest Neighbors (RkNN) techniques, and for neural locality sensitive

hashing, I use a simple 2-layer LSTM model with 8 units per layer. In my nearly unsupervised learning

framework, I use subsets of the hash functions, of size 10, to obtain clusters (ζ = 10). I employ 8 cores on

an i7 processor, with 32GB memory, for all the computations.
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5.3.3 Experiment Results

In summary, the proposed model KLSH-NU-RF that is learned by nearly unsupervised optimization of

hashcode representations which are fed as feature vectors into a supervised random forest classifier, sig-

nificantly outperforms its purely supervised counterpart, KLSH-RF, and also other semi-supervised mod-

els, such as, adversarial neural networks, variational autoencoders (Rios et al., 2018; Ganin et al., 2016;

Kingma et al., 2014).

In reference to Table 5.1, I first discuss results for the evaluation setting of using AIMed dataset as a

test set, and BioInfer as a training set. We observe that our model, KLSH-NU-RF, obtains F1 score, 3 pts

higher w.r.t. the most recent baseline, KLSH-RF. In comparison to the recent adversarial neural network

approaches, CNN-RevGrad, Bi-LSTM-RevGrad, Adv-CNN, Adv-Bi-LSTM, which are learned in a semi-

supervised (tranductive) manner just like our model, we gain 8-11 pts in F1 score. On the other hand,

when evaluating on BioInfer dataset as a test set and AIMed as a training set, my model is in tie w.r.t.

the adversarial neural model, Adv-Bi-LSTM, though outperforming the other three adversarial models by

large margins in F1 score. In comparison to KLSH-RF, we retain same F1 score, while gaining in recall

by 6 pts at the cost of losing 2 pts in precision.

For PubMed and BioNLP datasets, there is no prior evaluation of semi-supervised models. Neverthe-

less, in Table 5.2, we see that my model significantly outperforms the most recent baseline, KLSH-RF,

gaining F1 score by 4 pts for both the datasets. These two datasets have high importance to gauge practical

relevance of a model for the task of biomedical relation extraction.

In reference to Table 5.1 and 5.2, I also evaluated semi-supervised variational autoencoders (Kingma

et al., 2014), for all the four datasets. Despite extensive tuning of these neural models, the F1 scores

obtained are significantly low w.r.t. our semi-supervised approach.

The proposed approach is easily extensible for other modeling aspects introduced in the previous chap-

ters, such as non-stationary kernel functions, document level inference, joint use of semantic & syntactic
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parses (Garg et al., 2019, 2016), though I have focused only upon analyzing improvements from the prin-

cipled semi-supervised extension of the technique proposed in the previous chapter that had already been

shown to be successful for the task.

It is also noteworthy that, w.r.t. the most recent baseline for the four datasets used for the evaluation

above, KLSH-RF, the proposed model varies only in the sense that hashcode representations are learned

in a semi-supervised manner not only using examples from a training set but also a test set (discounting

the class labels). As for building the final classifier, an RF, both approaches are purely supervised using

only the hashcode representations of training examples along with their class labels, while completely

ignoring the test set. Therefore it is quite interesting (and perhaps surprising) to observe such drastic

improvements in F1 score w.r.t. the baseline, even more so considering the fact that the semi-supervised

hashcode learning framework is nearly unsupervised, using only the knowledge of which set an example

belongs to, a training or a test set, while completely ignoring the actual class labels of examples. Further,

note that the number of hash functions used in the previous chapter is 1000 whereas, here, I use only 100

hash functions. Compute time is same as for that model.

Neural Hashing

In reference to Table 5.1 and 5.2, I also evaluate NLSH-NU-RF (neural locality sensitive hashcodes from

nearly unsupervised learning), and find it to be performing a little worse than its kernel based counterpart,

KLSH-NU-RF, in terms of F1 scores, though it is highly competitive w.r.t. all the other baselines. See

Figure 5.4 for a direct contrast between the kernel hashing vs neural hashing, within the proposed semi-

supervised framework, across all the four datasets; here, we also observe that neural hashing is significantly

superior w.r.t. the best of the neural baselines.

Transductive vs Inductive

In the discussed experiments, I considered transductive settings for learning the proposed models,

KLSH-NU-RF & NLSH-NU-RF. For these models, the proposed approach of learning nearly unsuper-

vised hashcode representations is equally applicable for inductive settings. Specifically, for additional
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Figure 5.4: Comparison of neural hashing w.r.t. kernel hashing, and the best of neural baselines.

experimental results presented in the following, I consider a random subset of a training dataset itself as

a pseudo-test set; 25% of training examples are assigned value 0 for the indicator variable x, and the rest

of training examples are assigned value 1; using only these examples as input to Algorithm 4, and not a

real test set, I learn hash functions, which are then applied to the test set as well to obtain the hashcode

representations for test examples. Since the pseudo-test set is taken as a random subset of a training set,

the learned hashcode representations are purely unsupervised. It is also worth noting that, in inductive

settings, KLSH-NU-RF model is trained from information lesser than the baseline model, KLSH-RF. In

Figure 5.5, I compare results from all the three choices for learning hashcode representations, supervised,

transductive, and inductive.1 In the figure, we observe that both inductive and transductive settings are

more favorable w.r.t. the baseline. F1 scores obtained from the inductive setting are on a par with the

transductive settings, even though the former one require no information outside a training set unlike the

latter one.
1Of course, a Random Forest is trained in a supervised manner in all the three settings, and it is only the settings for learning

hashcodes which differ.
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Figure 5.5: Comparison of KLSH-RF across the three kinds of learning settings, supervised, transductive,
and inductive.

5.4 Chapter Summary

In this chapter, I proposed a semi-supervised framework for learning of kernelized locality sensitive hash-

code representations, a recent technique introduced in the previous chapter of this thesis, that was originally

supervised, which has shown state-of-the-art results for the difficult task of biomedical relation extraction

on four public datasets. Within the proposed semi-supervised framework, I use the knowledge of test ex-

amples, or a random subset of training examples as pseudo-test examples, for fine-grained optimization

of hash functions so as to obtain hashcode representations generalizing across training & test sets. The

experiment results show significant improvements in accuracy numbers w.r.t. the supervised hashcodes

representations approach, as well as semi-supervised neural network models based on adversarial learning

or variational autoencoding, for the task of bio-medical relation extraction across all the four datasets.

Further, I demonstrated that the generic learning framework can be used for neural networks based locality

sensitive hashcode representations, obtaining competitive accuracy numbers w.r.t. all the other baselines.
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Chapter 6

Related Work

In the previous chapters, I discussed an extensive list of related works as per the context of particular

contributions introduced in each chapter. Here, I summarize on more general related works applicable to

this thesis.

Relation Extraction

There have been different lines of work for extracting information on protein interactions. Pattern-matching

based systems (either manual or semi-automated) usually yield high precision but low recall (Hunter et al.,

2008; Krallinger et al., 2008; Hakenberg et al., 2008; Hahn and Surdeanu, 2015). Kernel-based methods

based on various convolution kernels have also been developed for the extraction task (Chang et al., 2016;

Tikk et al., 2010; Miwa et al., 2009; Airola et al., 2008; Mooney and Bunescu, 2005). Some approaches

work on string rather than parses (Mooney and Bunescu, 2005). Many neural networks based classifica-

tion models have also been applied for bio-medical relation extraction (Peng and Lu, 2017; Hsieh et al.,

2017; Rao et al., 2017; Kavuluru et al., 2017). In (Hsieh et al., 2017), it is shown through cross corpus

evaluations that kernel methods are more robust in domain adaptation scenarios compared to the neural

language models. Recently, for domain adaptation, neural network models have been explored, such as

the ones doing adversarial learning using the knowledge of examples from a test set (Rios et al., 2018;

Ganin et al., 2016), or semi-supervised variational autoencoders (Zhang and Lu, 2019; Kingma et al.,
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2014). Some recent works used distant supervision to obtain a large data set of protein-protein pairs for

their experiments (Mallory et al., 2015; Rao et al., 2017).

Outside the biomedical domain, SemEval-2010 Task 8 (Hendrickx et al., 2009) is one of the popular

relation extraction task (Socher et al., 2012; Li et al., 2015; Hashimoto et al., 2015; Xu et al., 2015a,b;

Santos et al., 2015; Miwa and Bansal, 2016) wherein accuracy numbers are relatively higher as the relations

between entities span across short text, making the task simpler. Some other relation extraction tasks in

general domain are more challenging, for which novel algorithms have been proposed based upon concepts

such as distance supervision, joint extraction of entities and relations (Ren et al., 2017; Qin et al., 2018;

Yuan et al., 2018; Luan et al., 2018; Lin et al., 2019); these contributions are complementary to the ones

proposed in this thesis.

Kernel Approximations

Low rank approximations reduce the training/inference cost of a kernel-based classifier, but not the the

cost of computing kernels (Williams and Seeger, 2001; Schwaighofer and Tresp, 2002; Lawrence, 2007;

Hoang et al., 2015). Also, caching reduces kernel cost, if high redundancies in the substructures (Severyn

and Moschitti, 2012). A large body of literature on feature selection is not directly applicable to kernels,

but rather only to explicit features (Yu and Liu, 2004; Brown et al., 2012). For reducing kernel cost in

inference, though not in learning, approximations exist for the subselection of data (Tibshirani, 1996; Das

and Kempe, 2011). For k-NN graphs, most of the approximations, including many variants of locality-

sensitive hashing (LSH), have been built for explicit features space (Indyk and Motwani, 1998; Heo et al.,

2012). Recently, LSH was extended for kernels (Kulis and Grauman, 2012; Raginsky and Lazebnik,

2009). There is another kernel based hashing model that employs a Support Vector Machine to obtain a

random maximum margin boundary in the kernel implied feature space for generating each of the hash

code bits (Joly and Buisson, 2011).

There are also other scalable techniques in the literature for approximation of a kernel function (Mos-

chitti, 2006; Rahimi and Recht, 2008; Pighin and Moschitti, 2009; Zanzotto and Dell’Arciprete, 2012;
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Severyn and Moschitti, 2013; Felix et al., 2016); computational cost reductions from these works are not

significant, and not directly applicable for convolution kernels in NLP.

Note that these approaches are only used as computationally efficient approximations of the traditional,

computationally-expensive kernel-based classifiers; unlike those approaches, my method is not only com-

putationally more efficient but also yields considerable accuracy improvements.

Structural Features for Relation Extraction

The above mentioned works on relation extraction either rely on text or its shallow parses, none using

semantic parsing for the extraction task. In this thesis, I proposed to use Abstract Meaning Represen-

tations as semantic parses of text for obtaining semantic structured features as input to the kernel based

models (Banarescu et al., 2012, 2013; Pust et al., 2015a; Wang et al., 2015a). Since semantic parsing is an

open problem, the semantic features can be highly noisy especially for biomedical domain (Wang et al.,

2015a; Vanderwende et al., 2015; Werling et al., 2015; Zhou et al., 2016; Buys and Blunsom, 2017; Kon-

stas et al., 2017). Fortunately, the proposed locality sensitive hashcodes based models in this thesis have

the advantage of being robust to such noise in data. In this thesis, for principled empirical comparisons of

the techniques proposed across the different chapters, I employed AMR parses of bio-text obtained from

the model that was originally released in (Pust et al., 2015a). One could improve the accuracy numbers

for my proposed models further by using the most advanced AMR parsers from the present/future works.

Though, one practical challenge therein is that it is not straightforward to extend a general domain AMR

parser for biomedical domain, partly because for the biomedical domain, an AMR parser relies upon a

model for biomedical named entity recognition which is itself an open problem. Recent works for unsu-

pervised neural network learning, such as BERT (Devlin et al., 2018; Radford et al., 2019), may be used

to improve semantic/syntactic parsing or even text based features which are input to my proposed models

for relation extraction.
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Chapter 7

Conclusions

In this thesis, I studied the difficult task of extracting information about bio-molecular interactions from

the semantic or syntactic parsing of scientific papers.

One of the primary contributions of this thesis is the idea of using a well-known technique, kernelized

locality-sensitive hashing, in order to derive feature vectors from natural language structures. More specif-

ically, I proposed to use random subspaces of hashcodes for building a random forest of decision trees. I

find this methodology particularly suitable for modeling natural language structures in settings where there

are significant mismatches between the training and the test conditions. Moreover I optimize a hashing

model in the context of classification performed using any model, by maximizing an approximation of the

mutual information between the hashcodes (feature vectors) and the class labels. I also proposed a novel

nonstationary extension of convolution kernels by introducing a data-driven parameterization of the kernel

similarity function. The extended kernels have better flexibility and expressibility of language represen-

tations, compared to conventional convolution kernels used in natural language tasks. Experiments on

multiple bio-medical relation extraction datasets demonstrate the considerable advantages of the proposed

approach w.r.t. the state-of-the-art, in terms of significant gain in accuracy numbers as well as scalability.

Finally, I proposed a semi-supervised framework for the learning of kernelized locality sensitive hash-

code representations. Within the proposed semi-supervised framework, one uses the knowledge of test
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examples for fine-grained optimization of hash functions so as to obtain hashcode representations gen-

eralizing across training & test sets. The experiment results show significant improvements in accuracy

numbers w.r.t. the proposed supervised hashcode representations approach, as well as semi-supervised

neural network models, for the same task of bio-medical relation extraction.

In the future, I plan to explore the applicability of this work for other NLP problems, such as dialog

modeling, unsupervised text generation, text classification, etc.
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Kraskov, A., H. Stögbauer, and P. Grassberger
2004. Estimating mutual information. Physical Review E.

Krause, A., A. Singh, and C. Guestrin
2008. Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research.

Kulis, B. and K. Grauman
2009. Kernelized locality-sensitive hashing for scalable image search. In Proceedings of the Interna-
tional Conference on Computer Vision.

Kulis, B. and K. Grauman
2012. Kernelized locality-sensitive hashing. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence.

Kumar, A., O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong, R. Paulus, and R. Socher
2016. Ask me anything: Dynamic memory networks for natural language processing. In Proceedings
of the International Conference on Machine Learning.

Lawrence, N. D.
2007. Learning for larger datasets with the gaussian process latent variable model. In Proceedings of
the International Conference on Artificial Intelligence and Statistics.

Le, Q. V., A. J. Smola, and S. Canu
2005. Heteroscedastic gaussian process regression. In Proceedings of the International Conference on
Machine Learning.

Li, H., W. Liu, and H. Ji
2014. Two-stage hashing for fast document retrieval. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

Li, J., M.-T. Luong, D. Jurafsky, and E. Hovy
2015. When are tree structures necessary for deep learning of representations? In Proceedings of the
Conference on Empirical Methods in Natural Language Processing.

112



Li, P., A. Shrivastava, J. L. Moore, and A. C. König
2011. Hashing algorithms for large-scale learning. In Proceedings of the Neural Information Processing
Systems Conference.

Lin, H., J. Yan, M. Qu, and X. Ren
2019. Learning dual retrieval module for semi-supervised relation extraction. In Proceedings of the
International Conference on World Wide Web.

Liu, H., R. Wang, S. Shan, and X. Chen
2016. Deep supervised hashing for fast image retrieval. In Proceedings of the Conference on Computer
Vision and Pattern Recognition.

Luan, Y., L. He, M. Ostendorf, and H. Hajishirzi
2018. Multi-task identification of entities, relations, and coreference for scientific knowledge graph
construction. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Luong, M.-T., H. Pham, and C. D. Manning
2015. Effective approaches to attention-based neural machine translation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing.

Mallory, E. K., C. Zhang, C. Ré, and R. B. Altman
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